Neural Networks as Graphs

Boris Knyazev

SAMSUNG Université de Montréal

Weight Space Learning

Agenda

- 1. Graph of neural architectures
 - a. Graph HyperNetworks
- 2. Graph of parameters
 - a. Neural graphs
 - b. NiNo
- 3. Future directions

1. Graph of Architectures

Graph of Architectures

$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$ conv
[0, 0, 0, 0, 1], bias
[0, 0, 0, 1, 0], pooling
[0, 0, 1, 0, 0], fc
[0, 0, 0, 0, 1], bias
[0, 0, 0, 0, -], 0
h is represented by:

- Graph HyperNetworks for Neural Architecture Search (Zhang et al., ICLR 2019)
- Parameter Prediction for Unseen Deep Architectures (Knyazev et al., NeurIPS 2021)

HyperNetworks

Standard objective:

 $w^* = \operatorname{argmin} f(x, w)$

Hypernetwork objective (Ha et al., 2016):

 $\theta^* = \operatorname{argmin} f(\mathbf{x}, \mathbf{w} = H[\theta; \cdot])$

Advantages:

- Reduce the number of params to train and store
- Neural Architecture Search
- Few-shot adaptation, data conditioning
- Better initialization of larger architectures

Graph HyperNetworks

Standard objective:

 $w^* = \operatorname{argmin} f(x, w)$

GHN objective:

 $\theta^* = \operatorname{argmin} f(\mathbf{x}, \mathbf{w} = H_D[\theta; a])$

- We generated a dataset of 1M graphs (no need to train the parameters!)
- We use the dataset for training a **parameter prediction** model (GHN)
- Parameter Prediction for Unseen Deep Architectures (Knyazev et al., NeurIPS 2021)
- Can We Scale Transformers to Predict Parameters of Diverse ImageNet Models? (Knyazev et al., ICML 2023)

Key Example

Pseudo-code

ghn = GHN('imagenet')	# 1. pretrained GHN
-----------------------	---------------------

model = resnet50()	# 2. can be almost any model
--------------------	------------------------------

model = ghn(model) # 3. returns model with predicted parameters

y = model(test_images) # 4. model can achieve high acc right away

- Predicted parameters \equiv strong initialization
- BUT works only for the pretraining dataset

Graph of Architectures – Summary

1. Advantages:

- a. Represents many neural architectures
- b. Compact representation
- c. Synergizes with hypernetworks:
 - i. Predicting parameters (for initialization)
 - ii. Neural Architecture Search
 - iii. Few-shot adaptation
- 2. Limitations (or opportunities):
 - a. Does not represent the parameters
 - b. Architecture/layer type constraints
 - c. Dataset specific

2. Graph ofParameters

Neural Network Parameters vs Images

Images:

- 1. Resize/crop images
- 2. Augmentations
- 3. Spatial locality, compositionality
- 4. 0-255
- 5. Clear applications

Neural networks:

- 1. Different and very large sizes
- 2. Different symmetries
- 3. Lack of intuitive structure
- 4. Different range of values
- 5. Applications are early but promising

- Neural Network Diffusion (Wang et al., 2024)
- Learning to Learn with Generative Models of Neural Network Checkpoints (Peebles et al., 2022)
- Hyper-Representations, SANE (Konstantin Schürholt, 2021-2024)

Graph of Parameters

 $\mathbf{y} = \operatorname{softmax}(\mathbf{W}^{(3)}\sigma(\mathbf{W}^{(2)}(\sigma(\mathbf{W}^{(1)}\mathbf{x}))))$ $\boldsymbol{\theta} = \left\{\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}\right\}$

Neural Graph $\mathcal{G}(\theta) = (\mathbf{V}, \mathbf{E})$

Graph Neural Networks for Learning Equivariant Representations of Neural Networks (ICLR 2024) M. Kofinas, B. Knyazev, Y. Zhang, Y. Chen, C.J. Burghouts, E. Gavves, C.G.M. Snoek, D.W. Zhang

Graph of Parameters - Llama 3^*

Accelerating Training with Neuron Interaction and Nowcasting Networks (Knyazev et al., ICLR 2025)

Graph of Parameters – Properties

$$f(\mathbf{x}, \mathbf{\theta}) = f(\mathbf{x}, \pi^{\text{good}}(\mathbf{\theta})) \qquad \mathcal{G}(\mathbf{\theta}) \cong \mathcal{G}(\pi^{\text{good}}(\mathbf{\theta}))$$
$$f(\mathbf{x}, \mathbf{\theta}) \neq f(\mathbf{x}, \pi^{\text{bad}}(\mathbf{\theta})) \qquad \mathcal{G}(\mathbf{\theta}) \ncong \mathcal{G}(\pi^{\text{bad}}(\mathbf{\theta}))$$

Neural graphs model **permutation symmetry**:

- Permutation (π) of nodes = permutation (π) neurons
- Graphs are isomorphic when the **neural network's function** does not change, and vice versa

Graph of Parameters – Why to use it?

$$\mathbf{V}^m, \boldsymbol{\mathcal{E}}^m = \text{GNN}_{\phi_m}(\mathbf{V}^{m-1}, \boldsymbol{\mathcal{E}}^{m-1})$$

Representation learned by GNNs:

- 1. Expressive
- 2. Equivariant/invariant to neuron permutations
- 3. Equivariant/invariant to input size

Predicting accuracy of weights (correlation)

Method	CIFAR10-GS	CIFAR10 Wild Park
NFN _{HNP} (Zhou et al., 2023a)	$0.934_{\pm 0.001}$	_
StatNN (Unterthiner et al., 2020)	$0.915 \scriptstyle \pm 0.002$	0.719 ± 0.010
NG-GNN (Ours)	0.931 ± 0.002	0.804 ± 0.009
NG-T (Ours)	0.935 ± 0.000	$0.817_{\pm 0.007}$

Graph Neural Networks for Learning Equivariant Representations of Neural Networks (ICLR 2024) M. Kofinas, B. Knyazev, Y. Zhang, Y. Chen, C.J. Burghouts, E. Gavves, C.G.M. Snoek, D.W. Zhang

Graph of Parameters – GNNs

Many works use such or similar graphs

- Accelerating Training with Neuron Interaction and Nowcasting Networks (ICLR 2025) B. Knyazev, A. Moudgil, G. Lajoie, E. Belilovsky, S. Lacoste-Julien
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks (ICLR 2024) M. Kofinas, B. Knyazev, Y. Zhang, Y. Chen, C.J. Burghouts, E. Gavves, C.G.M. Snoek, D.W. Zhang
- Universal Neural Functionals (arXiv 2024) A. Zhou, C. Finn, J. Harrison
- Graph Metanetworks for Processing Diverse Neural Architectures (ICLR 2024) D. Lim, H. Maron, M.T. Law, J. Lorraine, J. Lucas.
- Scale Equivariant Graph Metanetworks (NeurIPS 2024) I. Kalogeropoulos, G. Bouritsas, Y. Panagakis
- Improved Generalization of Weight Space Networks via Augmentations (ICML 2024) A. Shamsian, A. Navon, D.W. Zhang, Y. Zhang, E. Fetaya, G. Chechik, H. Maron
- Equivariant Architectures for Learning in Deep Weight Spaces (ICML 2023) A. Navon, A. Shamsian, I. Achituve, E. Fetaya, G. Chechik, H. Maron
- Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning (ICML 2020)
 - C. Liu, C. Lou, R. Wang, A.Y. Xi, L. Shen, J. Yan
- Graph Structure of Neural Networks (ICML 2020) J. You, J. Leskovec, K. He, S. Xie

Neural graphs + GNNs:

- 1. Different and very large sizes ✓
- 2. Different symmetries 🗸
- 3. Lack of intuitive structure
- 4. Different range of values
- 5. Applications optimization 🗸

NiNo

Neuron Interaction and Nowcasting Networks

Accelerating Training with Neuron Interaction and Nowcasting Networks

Adam for t in range(10^6):

- $\theta_{t+1} = adam.step(\theta_t, \nabla \theta_t, ...)$
 - Slow convergence

Learnable optimizers (L20) for t in range(10⁶): $\theta_{t+1} = f.predict(\theta_t, \nabla \theta_t, ...)$

- Faster convergence
- Overhead
- Generalization issues
- Tricky to integrate

- μLO: Compute-Efficient Meta-Generalization of Learned Optimizers (under review)
 B. Thérien, C.É. Joseph, B. Knyazev, E. Oyallon, I. Rish, E. Belilovsky
- Learning Versatile Optimizers on a Compute Diet (under review) A. Moudgil, B. Knyazev, G. Lajoie, E. Belilovsky
- VeLO: Training Versatile Learned Optimizers by Scaling Up (arXiv 2022) L. Metz, J. Harrison, C.D. Freeman, A. Merchant, L. Beyer, J. Bradbury, N. Agrawal et al.

Accelerating Training with Neuron Interaction and Nowcasting Networks

Periodically predict future parameters
for t in range(10⁶):
If t % 1000 == 0:
$$\theta_{t+K} = f.predict(\theta_t, \theta_{t-1}, ...)$$

else:
 $\theta_{t+1} = adam.step(\theta_t, \nabla \theta_t, ...)$

Weight Space Learning

Accelerating Training with Neuron Interaction and Nowcasting Networks

- Overhead
- Generalization issues
- Tricky to integrate

Periodically predict future parameters for t in range(10⁶): If t % 1000 == 0: $\theta_{t+K} = f.predict(\theta_t, \theta_{t-1}, ...)$ else: $\theta_{t+1} = adam.step(\theta_t, \nabla \theta_t, ...)$

- Faster convergence
- Less overhead
- Better generalization
- Easier to integrate

Key Example

Is optimization cost really a big issue?

- Many open-source models are already available
- GPUs are getting more powerful
- Optimization methods like Adam are good enough

Is optimization cost really a big issue?

- Many open-source License restrictions, harmful bias, backdoor attacks
- GPUs are getting more powerful
- Optimization methods like Adam

high intra/inter company competition and price

1000 GPUs × 90 days × 24 h × \$1.60/h = \$3.5mln

Is optimization cost really a big issue?

- Many open-source License restrictions, harmful bias, backdoor attacks
- GPUs are getting more powerful

high intra/inter company competition and price

- Optimization methods like Adam 1000 GPUs × 90 days × 24 h × \$1.60/h = \$3.5mln
 - Optimization remains the biggest cost in many pipelines
 - BUT it is still hard to justify a new optimization algorithm if it saves only 10% because of engineering overhead and unexpected outcomes

Background: Weight Nowcaster Networks

J. Jang et al. (ICML 2023)

Training and evaluation pipeline:

1. Collect many checkpoints $D=\{\theta\}$ in some tasks

2. Train WNN on D $\operatorname{argmin}_{\phi} ||\Delta \tilde{\theta}_{\tau+k} - \Delta \hat{\theta}_{\tau+k}||_1$

3. Use the trained WNN on any new task

Periodically predict future parameters for t in range(10⁶): If t % 1000 == 0: $\theta_{t+K} = f.predict(\theta_t, \theta_{t-1}, ...)$ else: $\theta_{t+1} = adam.step(\theta_t, \nabla \theta_t, ...)$

From WNN to NiNo

WNN

for t in range(10⁶): If t % 1000 == 0: $\theta_{t+K,i} = f.predict(\theta_{t,i}, \theta_{t-1,i}, ...) \# \forall i$ else: $\theta_{t+1,i} = adam.step(\theta_{t,i}, \nabla \theta_{t,i}, ...) \# \forall i$ # NiNo for t in range(10⁶): If t % 1000 == 0: $\theta_{t+K} = f.predict(\theta_t, \theta_{t-1}, ...; G)$ # jointly for all params else: $\theta_{t+1, i} = adam.step(\theta_{t, i}, \nabla \theta_{t, i}, ...)$ # $\forall i$

NiNo

- GNN inputs and outputs node and edge features
- Predict parameter deltas at multiple future horizons

•

Training and evaluation pipeline

- Collect many checkpoints $D=\{\theta\}$ in some tasks (in-distribution tasks)
- Train NiNo on D
- Use the trained NiNo on any new task task

	IN-DISTRIBUTION TASKS				OUT-OF-DISTRIBUTION TASKS				
	FM/16	C10/16	LM1B/3-24	LM1B/2-32	FM/32	C10/32	C100/32	LM1B/3-64	WIKI/3-64
Final training loss	0.25 ± 0.06	0.91 ± 0.1	5.94 ± 0.03	5.85 ± 0.04	-	_	_	_	_
#models	300	300	200	200	-	_	_	_	
#params	14K	15K	1.2M	1.6M	56K	57K	63K	3.3M	3.3M
Target (validation) metric	Acc	Acc	Perplexity	Perplexity	Acc	Acc	Acc	Perplexity	Perplexity
Target value	89.5%	66.0%	352	319	90.5%	72.5%	39%	181	147
Adam #steps	8606	8732	23000	23500	8269	8607	8341	23500	13500
NiNo #steps	4582	3775	11500	12000	4395	4323	4646	12000	7000

Table 1: In-distribution and out-of-distribution tasks.

- Speedup = (13500-7000)/13500=48%
- Scaled to 100M models

3. Future directions

Future directions

- 1. Generative vs deterministic models
- 2. Scalability vs equivariance
- 3. Handling diverse ranges of parameter values
- 4. Generalization (new architectures, new tasks)
- 5. More compelling applications needed
 - a. Optimization (l2o, nowcasting)
 - b. Model alignment
 - c. Model editing

Our Lab in Montréal

Samsung AI Lab (SAIL) Montréal https://www.sait.samsung.co.kr/saithome/about/labs.do

Interns for Fall 2025-Winter 2026: jobs.sail.montreal@gmail.com

SAMSUNG

Université m

de Montréal

Looking for potential students to join UdeM: <u>boris.knyazev@umontreal.ca</u>

