
Weight Space Learning

Neural Networks as
Graphs
Boris Knyazev

Weight Space Learning

Agenda

1. Graph of neural architectures

a. Graph HyperNetworks

2. Graph of parameters

a. Neural graphs

b. NiNo

3. Future directions

2

conv pool

neuron-1 neuron-3

neuron-2
neuron-4

conv

1. Graph of
Architectures

3

Weight Space Learning

Graph of Architectures

4

ResNet ViT
Example:

node 1: [1, 0, 0, 0, 0], input
node 2: [0, 1, 0, 0, 0], conv
node 3: [0, 0, 0, 0, 1], bias
node 4: [0, 0, 0, 1, 0], pooling
…
node 160: [0, 0, 1, 0, 0], fc
node 161: [0, 0, 0, 0, 1], bias

Each graph is represented by:
X - node features
A - adjacency matrix (forward pass flow)

● Graph HyperNetworks for Neural Architecture
Search (Zhang et al., ICLR 2019)

● Parameter Prediction for Unseen Deep
Architectures (Knyazev et al., NeurIPS 2021)

Weight Space Learning

HyperNetworks

Standard objective:

w* = argmin f(x, w)

Hypernetwork objective (Ha et al., 2016):

θ* = argmin f(x, w=H[θ; ⋅])

5

Advantages:

● Reduce the number of params to train and store
● Neural Architecture Search
● Few-shot adaptation, data conditioning
● Better initialization of larger architectures

Weight Space Learning

Graph HyperNetworks

6

● We generated a dataset of 1M graphs (no
need to train the parameters!)

● We use the dataset for training a
parameter prediction model (GHN)

Standard objective:

w* = argmin f(x, w)

GHN objective:

θ* = argmin f(x, w=HD[θ; a])

● Parameter Prediction for Unseen Deep Architectures (Knyazev et al.,
NeurIPS 2021)

● Can We Scale Transformers to Predict Parameters of Diverse ImageNet
Models? (Knyazev et al., ICML 2023)

Weight Space Learning

Key Example

Pseudo-code

ghn = GHN('imagenet') # 1. pretrained GHN

model = resnet50() # 2. can be almost any model

model = ghn(model) # 3. returns model with predicted parameters

y = model(test_images) # 4. model can achieve high acc right away

7

● Predicted parameters ≡ strong initialization
● BUT works only for the pretraining dataset

Weight Space Learning

Graph of Architectures – Summary

8

1. Advantages:
a. Represents many neural architectures
b. Compact representation
c. Synergizes with hypernetworks:

i. Predicting parameters (for initialization)
ii. Neural Architecture Search

iii. Few-shot adaptation

2. Limitations (or opportunities):
a. Does not represent the parameters
b. Architecture/layer type constraints
c. Dataset specific

2. Graph of
Parameters

9

Weight Space Learning

Neural Network Parameters vs Images

Neural networks:

1. Different and very large sizes
2. Different symmetries
3. Lack of intuitive structure
4. Different range of values
5. Applications are early but promising

10

● Neural Network Diffusion (Wang et al., 2024)
● Learning to Learn with Generative Models of Neural Network Checkpoints

(Peebles et al., 2022)
● Hyper-Representations, SANE (Konstantin Schürholt, 2021-2024)

Images:

1. Resize/crop images
2. Augmentations
3. Spatial locality, compositionality
4. 0-255
5. Clear applications

Weight Space Learning

Neural Graph

Graph of Parameters

11

y = softmax(W(3)σ(W(2)(σ(W(1)x))))

Graph Neural Networks for Learning Equivariant Representations of Neural Networks (ICLR 2024)
M. Kofinas, B. Knyazev, Y. Zhang, Y. Chen, C.J. Burghouts, E. Gavves, C.G.M. Snoek, D.W. Zhang

Weight Space Learning

Graph of Parameters – Llama3*

12

Accelerating Training with Neuron Interaction and Nowcasting Networks
(Knyazev et al., ICLR 2025)

Weight Space Learning

Graph of Parameters – Properties

Neural graphs model permutation symmetry:

● Permutation (π) of nodes = permutation (π) neurons
● Graphs are isomorphic when the neural network’s

function does not change, and vice versa

13

Weight Space Learning 14

Representation learned by GNNs:

1. Expressive
2. Equivariant/invariant to neuron permutations
3. Equivariant/invariant to input size

Predicting accuracy of weights (correlation)

Graph of Parameters – Why to use it?

Graph Neural Networks for Learning Equivariant Representations of Neural Networks (ICLR 2024)
M. Kofinas, B. Knyazev, Y. Zhang, Y. Chen, C.J. Burghouts, E. Gavves, C.G.M. Snoek, D.W. Zhang

Weight Space Learning

Graph of Parameters – GNNs

Many works use such or similar graphs

15

● Accelerating Training with Neuron Interaction and Nowcasting Networks (ICLR 2025)
 B. Knyazev, A. Moudgil, G. Lajoie, E. Belilovsky, S. Lacoste-Julien

● Graph Neural Networks for Learning Equivariant Representations of Neural Networks (ICLR 2024)
M. Kofinas, B. Knyazev, Y. Zhang, Y. Chen, C.J. Burghouts, E. Gavves, C.G.M. Snoek, D.W. Zhang

● Universal Neural Functionals (arXiv 2024)
 A. Zhou, C. Finn, J. Harrison

● Graph Metanetworks for Processing Diverse Neural Architectures (ICLR 2024)
D. Lim, H. Maron, M.T. Law, J. Lorraine, J. Lucas.

● Scale Equivariant Graph Metanetworks (NeurIPS 2024)
 I. Kalogeropoulos, G. Bouritsas, Y. Panagakis

● Improved Generalization of Weight Space Networks via Augmentations (ICML 2024)
 A. Shamsian, A. Navon, D.W. Zhang, Y. Zhang, E. Fetaya, G. Chechik, H. Maron

● Equivariant Architectures for Learning in Deep Weight Spaces (ICML 2023)
 A. Navon, A. Shamsian, I. Achituve, E. Fetaya, G. Chechik, H. Maron

● Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and
Federated Learning (ICML 2020)

 C. Liu, C. Lou, R. Wang, A.Y. Xi, L. Shen, J. Yan
● Graph Structure of Neural Networks (ICML 2020)

 J. You, J. Leskovec, K. He, S. Xie

Neural graphs + GNNs:
1. Different and very large sizes ✔
2. Different symmetries ✔
3. Lack of intuitive structure
4. Different range of values
5. Applications – optimization ✔

NiNo

Neuron Interaction and Nowcasting Networks

16

Weight Space Learning

Accelerating Training with Neuron Interaction and Nowcasting Networks

17

● Slow convergence

● μLO: Compute-Efficient Meta-Generalization of Learned Optimizers (under review)
B. Thérien, C.É. Joseph, B. Knyazev, E. Oyallon, I. Rish, E. Belilovsky

● Learning Versatile Optimizers on a Compute Diet (under review)
 A. Moudgil, B. Knyazev, G. Lajoie, E. Belilovsky

● VeLO: Training Versatile Learned Optimizers by Scaling Up (arXiv 2022)
 L. Metz, J. Harrison, C.D. Freeman, A. Merchant, L. Beyer, J. Bradbury, N. Agrawal et al.

Adam
for t in range(106):
 θt+1 = adam.step(θt , ∇θt , …)

Learnable optimizers (L2O)
for t in range(106):
 θt+1 = f.predict(θt , ∇θt , …)

● Faster convergence
● Overhead
● Generalization issues
● Tricky to integrate

Weight Space Learning

Accelerating Training with Neuron Interaction and Nowcasting Networks

18

● Slow convergence

● Faster convergence
● Overhead
● Generalization issues
● Tricky to integrate

Adam
for t in range(106):
 θt+1 = adam.step(θt , ∇θt , …)

Learnable optimizers (L2O)
for t in range(106):
 θt+1 = f.predict(θt , ∇θt , …)

Periodically predict future parameters
for t in range(106):
 If t % 1000 == 0:
 θt+K = f.predict(θt , θt-1 , …)
 else:
 θt+1 = adam.step(θt , ∇θt , …)

Weight Space Learning

Accelerating Training with Neuron Interaction and Nowcasting Networks

19

Periodically predict future parameters
for t in range(106):
 If t % 1000 == 0:
 θt+K = f.predict(θt , θt-1 , …)
 else:
 θt+1 = adam.step(θt , ∇θt , …)

Adam
for t in range(106):
 θt+1 = adam.step(θt , ∇θt , …)

● Slow convergence

Learnable optimizers (L2O)
for t in range(106):
 θt+1 = f.predict(θt , ∇θt , …) ● Faster convergence

● Less overhead
● Better generalization
● Easier to integrate

● Faster convergence
● Overhead
● Generalization issues
● Tricky to integrate

Weight Space Learning

Key Example

20

Weight Space Learning

Is optimization cost really a big issue?

● Many open-source models are already available

● GPUs are getting more powerful

● Optimization methods like Adam are good enough

21

Weight Space Learning

Is optimization cost really a big issue?

● Many open-source models are already available

● GPUs are getting more powerful

● Optimization methods like Adam are good enough

22

high intra/inter company competition and price

1000 GPUs × 90 days × 24 h × $1.60/h = $3.5mln

License restrictions, harmful bias, backdoor attacks

Weight Space Learning

Is optimization cost really a big issue?

● Many open-source models are already available

● GPUs are getting more powerful

● Optimization methods like Adam are good enough

23

high intra/inter company competition and price

1000 GPUs × 90 days × 24 h × $1.60/h = $3.5mln

License restrictions, harmful bias, backdoor attacks

● Optimization remains the biggest cost in many pipelines
● BUT it is still hard to justify a new optimization algorithm

if it saves only 10% because of engineering overhead
and unexpected outcomes

Weight Space Learning

Background: Weight Nowcaster Networks

24

Training and evaluation pipeline:

1. Collect many checkpoints D={θ} in some tasks

2. Train WNN on D

3. Use the trained WNN on any new task

Periodically predict future parameters
for t in range(106):
 If t % 1000 == 0:
 θt+K = f.predict(θt , θt-1 , …)
 else:
 θt+1 = adam.step(θt , ∇θt , …)

J. Jang et al. (ICML 2023)

Weight Space Learning

From WNN to NiNo

25

WNN
for t in range(106):
 If t % 1000 == 0:
 θt+K, i = f.predict(θt, i , θt-1, i , …) # ∀ i
 else:
 θt+1, i = adam.step(θt, i , ∇θt, i , …) # ∀ i

NiNo
for t in range(106):
 If t % 1000 == 0:
 θt+K = f.predict(θt , θt-1 , …; G) # jointly for all params
 else:
 θt+1, i = adam.step(θt, i , ∇θt, i , …) # ∀ i

Weight Space Learning

NiNo

26

● Take 5 past parameter states as input

● GNN inputs and outputs node and edge features

● Predict parameter deltas at multiple future horizons

Weight Space Learning

Training and evaluation pipeline

● Collect many checkpoints D={θ} in some tasks (in-distribution tasks)

● Train NiNo on D

● Use the trained NiNo on any new task task

27

● Speedup =
(13500-7000)/13500=48%

● Scaled to 100M models

3. Future
directions

28

Weight Space Learning

Future directions

1. Generative vs deterministic models
2. Scalability vs equivariance
3. Handling diverse ranges of parameter values
4. Generalization (new architectures, new tasks)
5. More compelling applications needed

a. Optimization (l2o, nowcasting)
b. Model alignment
c. Model editing

29

Our Lab in
Montréal

30

Samsung AI Lab (SAIL) Montréal
https://www.sait.samsung.co.kr/saithome/about/labs.do

Interns for Fall 2025-Winter 2026: jobs.sail.montreal@gmail.com

Looking for potential students to join UdeM: boris.knyazev@umontreal.ca

