@inproceedings{knyazev2024accelerating,title={Accelerating Training with Neuron Interaction and Nowcasting Networks},author={Knyazev, Boris and Moudgil, Abhinav and Lajoie, Guillaume and Belilovsky, Eugene and Lacoste-Julien, Simon},booktitle={ICLR},year={2025},}
Celo: Training Versatile Learned Optimizers on a Compute Diet
@article{moudgil2025celo,title={Celo: Training Versatile Learned Optimizers on a Compute Diet},author={Moudgil, Abhinav and Knyazev, Boris and Lajoie, Guillaume and Belilovsky, Eugene},journal={Transactions on Machine Learning Research (TMLR)},year={2025},}
(Almost) Free Modality Stitching of Foundation Models
Jaisidh Singh, Diganta Misra, Boris Knyazev, and Antonio Orvieto
@inproceedings{singh2025almost,title={(Almost) Free Modality Stitching of Foundation Models},author={Singh, Jaisidh and Misra, Diganta and Knyazev, Boris and Orvieto, Antonio},booktitle={EMNLP},pages={19784--19800},year={2025},}
2024
μLO: Compute-Efficient Meta-Generalization of Learned Optimizers
Benjamin Thérien, Charles-Étienne Joseph, Boris Knyazev, Edouard Oyallon, and 2 more authors
@inproceedings{therien2024mu,title={$\mu${LO}: Compute-Efficient Meta-Generalization of Learned Optimizers},author={Th{\'e}rien, Benjamin and Joseph, Charles-{\'E}tienne and Knyazev, Boris and Oyallon, Edouard and Rish, Irina and Belilovsky, Eugene},booktitle={OPT for ML 2024 NeurIPS Workshop},year={2024},}
Graph Neural Networks for Learning Equivariant Representations of Neural Networks
Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, and 4 more authors
@inproceedings{kofinas2024graph,title={{G}raph {N}eural {N}etworks for {L}earning {E}quivariant {R}epresentations of {N}eural {N}etworks},author={Kofinas, Miltiadis and Knyazev, Boris and Zhang, Yan and Chen, Yunlu and Burghouts, Gertjan J. and Gavves, Efstratios and Snoek, Cees G. M. and Zhang, David W.},booktitle={ICLR},year={2024},}
2023
Can We Scale Transformers to Predict Parameters of Diverse Imagenet Models?
@inproceedings{knyazev2023can,title={Can We Scale Transformers to Predict Parameters of Diverse Imagenet Models?},author={Knyazev, Boris and Hwang, Doha and Lacoste-Julien, Simon},booktitle={ICML},year={2023},}
2022
Hyper-representations as Generative Models: Sampling Unseen Neural Network Weights
@inproceedings{schurholt2022hyper,title={Hyper-representations as Generative Models: Sampling Unseen Neural Network Weights},author={Sch{\"u}rholt, Konstantin and Knyazev, Boris and Gir{\'o}-i-Nieto, Xavier and Borth, Damian},booktitle={NeurIPS},year={2022},}
On Evaluation Metrics for Graph Generative Models
Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and 1 more author
@inproceedings{thompsone2022valuation,title={On Evaluation Metrics for Graph Generative Models},author={Thompson, Rylee and Knyazev, Boris and Ghalebi, Elahe and Kim, Jungtaek and Taylor, Graham W},booktitle={ICLR},year={2022},}
2021
Parameter Prediction for Unseen Deep Architectures
Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero Soriano
@inproceedings{knyazev2021parameter,title={Parameter Prediction for Unseen Deep Architectures},author={Knyazev, Boris and Drozdzal, Michal and Taylor, Graham W and Romero Soriano, Adriana},booktitle={NeurIPS},year={2021},}
Brick-by-brick: Combinatorial Construction with Deep Reinforcement Learning
Hyunsoo Chung, Jungtaek Kim, Boris Knyazev, Jinhwi Lee, and 3 more authors
@article{chung2021brick,title={Brick-by-brick: Combinatorial Construction with Deep Reinforcement Learning},author={Chung, Hyunsoo and Kim, Jungtaek and Knyazev, Boris and Lee, Jinhwi and Taylor, Graham W and Park, Jaesik and Cho, Minsu},journal={NeurIPS},volume={34},pages={5745--5757},year={2021},}
Generative Compositional Augmentations for Scene Graph Prediction
Boris Knyazev, Harm Vries, Cătălina Cangea, Graham W. Taylor, and 2 more authors
@inproceedings{knyazev2020generative,title={Generative Compositional Augmentations for Scene Graph Prediction},author={Knyazev, Boris and de Vries, Harm and Cangea, Cătălina and Taylor, Graham W. and Courville, Aaron and Belilovsky, Eugene},booktitle={ICCV},year={2021},}
Context-aware Scene Graph Generation with Seq2Seq Transformers
Yichao Lu, Himanshu Rai, Jason Chang, Boris Knyazev, and 4 more authors
@inproceedings{lu2021context,title={Context-aware Scene Graph Generation with Seq2Seq Transformers},author={Lu, Yichao and Rai, Himanshu and Chang, Jason and Knyazev, Boris and Yu, Guangwei and Shekhar, Shashank and Taylor, Graham W and Volkovs, Maksims},booktitle={ICCV},pages={15931--15941},year={2021},}
Learning Temporal Attention in Dynamic Graphs with Bilinear Interactions
@article{knyazev2021learning,title={Learning Temporal Attention in Dynamic Graphs with Bilinear Interactions},author={Knyazev, Boris and Augusta, Carolyn and Taylor, Graham W},journal={Plos one},volume={16},number={3},pages={e0247936},year={2021},publisher={Public Library of Science San Francisco, CA USA},}
2020
Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation
Boris Knyazev, Harm Vries, Cătălina Cangea, Graham W Taylor, and 2 more authors
@inproceedings{knyazev2020graphdensity,title={Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation},author={Knyazev, Boris and de Vries, Harm and Cangea, Cătălina and Taylor, Graham W and Courville, Aaron and Belilovsky, Eugene},booktitle={British Machine Vision Conference (BMVC)},year={2020},}
2019
Understanding Attention and Generalization in Graph Neural Networks
@inproceedings{knyazev2019understanding,title={Understanding Attention and Generalization in Graph Neural Networks},author={Knyazev, Boris and Taylor, Graham W and Amer, Mohamed},booktitle={NeurIPS},year={2019},}