
Parameter Prediction for Unseen Deep Architectures

Boris Knyazev1,2∗ Michal Drozdzal4,† Graham W. Taylor1,2,3,† Adriana Romero-Soriano4,5,†

1 University of Guelph 2 Vector Institute for Artificial Intelligence
3 Canada CIFAR AI Chair 4 Facebook AI Research 5 McGill University

†equal advising

https://github.com/facebookresearch/ppuda

Abstract

Deep learning has been successful in automating the design of features in machine
learning pipelines. However, the algorithms optimizing neural network parameters
remain largely hand-designed and computationally inefficient. We study if we can
use deep learning to directly predict these parameters by exploiting the past knowl-
edge of training other networks. We introduce a large-scale dataset of diverse com-
putational graphs of neural architectures – DEEPNETS-1M– and use it to explore
parameter prediction on CIFAR-10 and ImageNet. By leveraging advances in graph
neural networks, we propose a hypernetwork that can predict performant parameters
in a single forward pass taking a fraction of a second, even on a CPU. The proposed
model achieves surprisingly good performance on unseen and diverse networks. For
example, it is able to predict all 24 million parameters of a ResNet-50 achieving a
60% accuracy on CIFAR-10. On ImageNet, top-5 accuracy of some of our networks
approaches 50%. Our task along with the model and results can potentially lead to
a new, more computationally efficient paradigm of training networks. Our model
also learns a strong representation of neural architectures enabling their analysis.

1 Introduction

Consider the problem of training deep neural networks on large annotated datasets, such as
ImageNet [1]. This problem can be formalized as finding optimal parameters for a given neural
network a, parameterized by w, w.r.t. a loss function L on the dataset D = {(xi, yi)}Ni=1 of inputs
xi and targets yi:

arg min
w

∑N

i=1
L(f(xi; a,w), yi), (1)

where f(xi; a,w) represents a forward pass. Equation 1 is usually minimized by iterative
optimization algorithms – e.g. SGD [2] and Adam [3] – that converge to performant parameters
wp of the architecture a. Despite the progress in improving the training speed and convergence [4–7],
obtaining wp remains a bottleneck in large-scale machine learning pipelines. For example, training
a ResNet-50 [8] on ImageNet can take many GPU hours [9]. With the ever growing size of net-
works [10] and necessity of training the networks repeatedly (e.g. for hyperparameter or architecture
search), the classical process of obtaining wp is becoming computationally unsustainable [11–13].

A new parameter prediction task. When optimizing the parameters for a new architecture a,
typical optimizers disregard past experience gained by optimizing other nets. However, leveraging
this past experience can be the key to reduce the reliance on iterative optimization and, hence the
high computational demands. To progress in that direction, we propose a new task where iterative
optimization is replaced with a single forward pass of a hypernetwork [14] HD. To tackle the task,
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HD is expected to leverage the knowledge of how to optimize other networks F . Formally, the
task is to predict the parameters of an unseen architecture a /∈ F using HD, parameterized by θp:
ŵp = HD(a; θp). The task is constrained to a dataset D, so ŵp are the predicted parameters for
which the test set performance of f(x; a, ŵp) is similar to the one of f(x; a,wp). For example,
we consider CIFAR-10 [15] and ImageNet image classification datasets D, where the test set
performance is classification accuracy on test images.

Approaching our task. A straightforward approach to expose HD to the knowledge of how to
optimize other networks is to train it on a large training set of {(ai,wp,i)} pairs, however, that is
prohibitive2. Instead, we follow the bi-level optimization paradigm common in meta-learning [16–18],
but rather than iterating over M tasks, we iterate over M training architectures F = {ai}Mi=1:

arg min
θ

∑N

j=1

∑M

i=1
L
(
f
(
xj ; ai, HD(ai; θ)

)
, yj

)
. (2)

By optimizing Equation 2, the hypernetwork HD gradually gains knowledge of how to predict
performant parameters for training architectures. It can then leverage this knowledge at test time
– when predicting parameters for unseen architectures. To approach the problem in Equation 2, we
need to design the network space F and HD. For F , we rely on the previous design spaces for
neural architectures [19] that we extend in two ways: the ability to sample distinct architectures
and an expanded design space that includes diverse architectures, such as ResNets and Visual
Transformers [20]. Such architectures can be fully described in the form of computational graphs
(Fig. 1). So, to design the hypernetwork HD, we rely on recent advances in machine learning
on graph-structured data [21–24]. In particular, we build on the Graph HyperNetworks method
(GHNs) [24] that also optimizes Equation 2. However, GHNs do not aim to predict large-scale
performant parameters as we do in this work, which motivates us to improve on their approach.

By designing our diverse space F and improving on GHNs, we boost the accuracy achieved by the
predicted parameters on unseen architectures to 77% (top-1) and 48% (top-5) on CIFAR-10 [15] and
ImageNet [1], respectively. Surprisingly, our GHN shows good out-of-distribution generalization and
predicts good parameters for architectures that are much larger and deeper compared to the ones seen
in training. For example, we can predict all 24 million parameters of ResNet-50 in less than a second
either on a GPU or CPU achieving ∼60% on CIFAR-10 without any gradient updates (Fig 1, (b)).

Overall, our framework and results pave the road toward a new and significantly more efficient
paradigm for training networks. Our contributions are as follows: (a) we introduce the novel task of
predicting performant parameters for diverse feedforward neural networks with a single hypernetwork
forward pass; (b) we introduce DEEPNETS-1M – a standardized benchmark with in-distribution and
out-of-distribution architectures to track progress on the task (§ 3); (c) we define several baselines
and propose a GHN model (§ 4) that performs surprisingly well on CIFAR-10 and ImageNet (§ 5.1);
(d) we show that our model learns a strong representation of neural network architectures (§ 5.2),
and our model is useful for initializing neural networks (§ 5.3). Our DEEPNETS-1M dataset, trained
GHNs and code is available at https://github.com/facebookresearch/ppuda.
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Figure 1: (a) Overview of our GHN model (§ 4) trained by backpropagation through the predicted
parameters (ŵp) on a given image dataset and our DEEPNETS-1M dataset of architectures. Colored
captions show our key improvements to vanilla GHNs (§ 2.2). The red one is used only during
training GHNs, while the blue ones are used both at training and testing time. The computational
graph of a1 is visualized as described in Table 1. (b) Comparing classification accuracies when all
the parameters of a ResNet-50 are predicted by GHNs versus when its parameters are trained with
SGD (see full results in § 5).

2Training a single network ai can take several GPU days and thousands of trained networks may be required.
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2 Background

We start by providing a brief background about the network design spaces leveraged in the creation
of our DEEPNETS-1M dataset of neural architectures described in § 3. We then cover elements of
graph hypernetworks that we leverage when designing our specific GHN HD in § 4.

2.1 Network Design Space of DARTS

DARTS [19] is a differentiable NAS framework. For image classification tasks such as those
considered in this work, its networks are defined by four types of building blocks: stems, normal
cells, reduction cells, and classification heads. Stems are fixed blocks of convolutional operations
that process input images. The normal and reduction cells are the main blocks of architectures and
are composed of: 3×3 and 5×5 separable convolutions, 3×3 and 5×5 dilated separable convolutions,
3×3 max pooling, 3×3 average pooling, identity and zero (to indicate the absence of connectivity
between two operations). Finally, the classification head defines the network output and is built with
a global pooling followed by a single fully connected layer.

Typically, DARTS networks have one stem block, 14-20 cells, and one classification head, altogether
forming a deep computational graph. The reduction cells, placed only at 1/3 and 2/3 of the total depth,
decrease the spatial resolution and increase the channel dimensionality by a factor of 2. Summation
and concatenation are used to aggregate outputs from multiple operations within each cell. To
make the channel dimensionalities match, 1×1 convolutions are used as needed. All convolutional
operations use the ReLU-Conv-Batch Norm (BN) [7] order. Overall, DARTS enables defining strong
architectures that combine many principles of manual [25, 8, 26, 27] and automatic [24, 28–33]
design of neural architectures. While DARTS learns the optimal task-specific cells, the framework
can be modified to permit sampling randomly-structured cells. We leverage this possibility for the
DEEPNETS-1M construction in § 3. Please see § A.1 for further details on DARTS.

2.2 Graph HyperNetwork: GHN-1

Representation of architectures. GHNs [24] directly operate on the computational graph of a
neural architecture a. Specifically, a is a directed acyclic graph (DAG), where nodes V = {vi}|V |i=1
are operations (e.g. convolutions, fully-connected layers, summations, etc.) and their connectivity
is described by a binary adjacency matrix A ∈ {0, 1}|V |×|V |. Nodes are further characterized
by a matrix of initial node features H0 = [h0

1,h
0
2, ...,h

0
|V |], where each h0

v is a one-hot vector
representing the operation performed by the node. We also use such a one-hot representation for H0,
but in addition encode the shape of parameters associated with nodes as described in detail in § B.1.

Design of the graph hypernetwork. In [24], the graph hypernetwork HD consists of three key
modules. The first module takes the input node features H0 and transforms them into d-dimensional
node features H1 ∈ R|V |×d through an embedding layer. The second module takes H1 together with
A and feeds them into a specific variant of the gated graph neural network (GatedGNN) [34]. In
particular, their GatedGNN mimics the canonical order π of node execution in the forward (fw) and
backward (bw) passes through a computational graph. To do so, it sequentially traverses the graph
and performs iterative message passing operations and node feature updates as follows:

∀t ∈ [1, ..., T ] :
[
∀π ∈ [fw, bw] :

(
∀v ∈ π : mt

v =
∑
u∈Nπv

MLP(htu), htv = GRU(htv,m
t
v)
)]
, (3)

where T denotes the total number of forward-backward passes; htv corresponds to the features of
node v in the t-th graph traversal; MLP(·) is a multi-layer perceptron; and GRU(·) is the update
function of the Gated Recurrent Unit [35]. In the forward propagation (π = fw), N π

v corresponds
to the incoming neighbors of the node defined by A, then in the backward propagation (π = bw) it
similarly corresponds to the outgoing neighbors of the node. The last module uses the GatedGNN
output hidden states hTv to condition a decoder that produces the parameters ŵv

p (e.g. convolutional
weights) associated with each node. In practice, to handle different parameter dimensionalities per
operation type, the output of the hypernetwork is reshaped and sliced according to the shape of
parameters in each node. We refer to the model described above as GHN-1 (Fig. 1). Further subtleties
of implementing this model in the context of our task are discussed in § B.1.
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Table 1: Examples of computational graphs (visualized using NetworkX [44]) in each split and their key
statistics, to which we add the average degree and average shortest path length often used to measure local and
global graph properties respectively [45, 46]. In the visualized graphs, a node is one of the 15 primitives coded
with markers shown at the bottom, where they are sorted by the frequency in the training set. For visualization
purposes, a blue triangle marker differentiates a 1×1 convolution (equivalent to a fully-connected layer over
channels) from other convolutions, but its primitive type is still just convolution. *Computed based on CIFAR-10.

IN-DISTRIBUTION OUT-OF-DISTRIBUTION

TRAIN VAL/TEST WIDE DEEP DENSE BN-FREE RESNET/VIT
#graphs 106 500/500 100 100 100 100 1/1
#cells 4-18 4-18 4-18 10-36 4-18 4-18 16/12
#channels 16-128 32-128 128-1216 32-208 32-240 32-336 64/128
#nodes (|V |) 21-827 33-579 33-579 74-1017 57-993 33-503 161/114
% w/o BN 3.5% 4.1% 4.1% 2.0% 5.0% 100% 0%/100%
#params(M)* 0.01-3.1 2.5-35 39-101 2.5-15.3 2.5-8.8 2.5-7.7 23.5/1.0
avg degree 2.3±0.1 2.3±0.1 2.3±0.1 2.3±0.1 2.4±0.1 2.4±0.1 2.2/2.3
avg path 14.5±4.8 14.5±4.9 14.7±4.9 26.2±9.3 15.1±4.1 10.0±2.8 11.2/10.7

marker
primitive conv BN sum bias group

conv
concat dilated

gr. conv
LN max

pool
avg
pool

MSA SE input glob
avg

pos
enc

fraction in TRAIN (%) 36.3 25.5 11.1 6.5 5.1 3.8 2.5 2.5 1.8 1.7 1.2 1.0 0.5 0.5 0.2

3 DEEPNETS-1M
The network design space of DARTS is limited by the number of unique operations that compose
cells, and the low variety of stems and classification heads. Thus, many architectures are not realizable
within this design space, including: VGG [25], ResNets [8], MobileNet [33] or more recent ones such
as Visual Transformer (ViT) [20] and Normalization-free networks [36, 37]. Furthermore, DARTS
does not define a procedure to sample random architectures. By addressing these two limitations we
aim to expose our hypernetwork to diverse training architectures and permit its evaluation on common
architectures, such as ResNet-50. We hypothesize that increased training diversity can improve hyper-
networks’ generalization to unseen architectures making it more competitive to iterative optimizers.

Extending the network design space. We extend the set of possible operations with non-separable
2D convolutions3, Squeeze&Excite4 (SE) [40] and Transformer-based operations [41, 20]: multihead
self-attention (MSA), positional encoding and layer norm (LN) [42]. Each node (operation) in
our graphs has two attributes: primitive type (e.g. convolution) and shape (e.g. 3×3×512×512).
Overall, our extended set consists of 15 primitive types (Table 1). We also extend the diversity of
the generated architectures by introducing VGG-style classification heads and ViT stems. Finally,
to further increase architectural diversity, we allow the operations to not include batch norm (BN) [7]
and permit networks without channel width expansion (e.g. as in [20]).

Architecture generation process. We generate different subsets of architectures (see the description
of each subset in the next two paragraphs and in Table 1). For each subset depending on its purpose,
we predefine a range of possible model depths (number of cells), widths and number of nodes per cell.
Then, we sample a stem, a normal and reduction cell and a classification head. The internal structure of
the normal and reduction cells is defined by uniformly sampling from all available operations. Due to a
diverse design space it is extremely unlikely to sample the same architecture multiple times, but we ran
a sanity check using the Hungarian algorithm [43] to confirm that (see Figure 6 in § A.2 for details).

In-distribution (ID) architectures. We generate a training set of |F| = 106 architectures and
validation/test sets of 500/500 architectures that follow the same generation rules and are considered
to be ID samples. However, training on large architectures can be prohibitive, e.g. in terms of GPU
memory. Thus, in the training set we allow the number of channels and, hence the total number
of parameters, to be stochastically defined given computational resources. For example, to train

3Non-separable convolutions have weights of e.g. shape 3×3×512×512 as in ResNet-50. NAS works, such
as DARTS and GHN, avoid such convolutions, since the separable ones [38] are more efficient. Non-separable
convolutions are nevertheless common in practice and can often boost the downstream performance.

4The Squeeze&Excite operation is common in many efficient networks [39, 12].
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our models we upper bound the number of parameters in the training architectures to around 3M
by sampling fewer channels if necessary. In the evaluation sets, the number of channels is fixed.
Therefore, this pre-processing step prior to training results in some distribution shift between the
training and the validation/test sets. However, the shift is not imposed by our dataset.

Out-of-distribution (OOD) architectures. We generate five OOD test sets that follow different
generation rules. In particular, we define WIDE and DEEP sets that are of interest due the stronger
downstream performance of such nets in large-scale tasks [47, 48, 10]. These nets are often more
challenging to train for fundamental [49, 50] or computational [51] reasons, so predicting their
parameters might ease their subsequent optimization. We also define the DENSE set, since networks
with many operations per cell and complex connectivity are underexplored in the literature despite
their potential [27]. Next, we define the BN-FREE set that is of interest due to BN’s potential negative
side-effects [52, 53] and the difficulty or unnecessity of using it in some cases [54–56, 36, 37]. We
finally add the RESNET/VIT set with two predefined image classification architectures: commonly-
used ResNet-50 [8] and a smaller 12-layer version of the Visual Transformer (ViT) [20] that has
recently received a lot of attention in the vision community. Please see § A.1 and § A.2 for further
details and statistics of our DEEPNETS-1M dataset.

4 Improved Graph HyperNetworks: GHN-2
In this section, we introduce our three key improvements to the baseline GHN-1 described in § 2.2
(Fig. 1). These components are essential to predict stronger parameters on our task. For the empirical
validation of the effectiveness of these components see ablation studies in § 5.1 and § C.2.1.

4.1 Differentiable Normalization of Predicted Parameters
Table 2: Parameter normalizations.

Type of node v Normalization

Conv./fully-conn. ŵ
v
p

√
β/(CinHW)

Norm. weights 2× sigmoid(ŵvp/T )
Biases tanh(ŵvp/T )

When training the parameters of a given network from scratch
using iterative optimization methods, the initialization of pa-
rameters is crucial. A common approach is to use He [57] or
Glorot [58] initialization to stabilize the variance of activa-
tions across layers of the network. Chang et al. [59] showed
that when the parameters of the network are instead predicted
by a hypernetwork, the activations in the network tend to
explode or vanish. To address the issue of unstable network activations especially for the case of pre-
dicting parameters of diverse architectures, we apply operation-dependent normalizations (Table 2).
We normalize convolutional and fully-connected weights by following the fan-in scheme of [57]
(see the comparison to fan-out in § C.2.1): ŵv

p

√
β/(CinHW), where Cin,H,W are the number of

input channels and spatial dimensions of weights ŵv
p , respectively; and β is a nonlinearity specific

constant following the analysis in [57]. The parameters of normalization layers such as BN and LN,
as well as biases typically initialized with constants, are normalized by applying a squashing function
with temperature T to imitate the empirical distributions of models trained with SGD (see Table 2).
These are differentiable normalizations, so that they are applied at training (and testing) time. Further
analysis of our normalization and its stabilizing effect on activations is presented in § B.2.2.

4.2 Enhancing Long-range Message Propagation

Figure 2: Virtual edges
(in green) allow for better
capture of global context.

Computational graphs often take the form of long chains (Table 1) with only
a few incoming/outcoming edges per node. This structure might hinder
long-range propagation of information between nodes [60]. Different
approaches to alleviate the long-range propagation problem exist [61–63],
including stacking GHNs in [24]. Instead we adopt simple graph-based
heuristics in line with recent works [64, 65]. In particular, we add virtual
edges between two nodes v and u and weight them based on the shortest
path svu between them (Fig. 2). To avoid interference with the real edges in the computational graph,
we introduce a separate MLPsp to transform the features of the nodes connected through these virtual
edges, and redefine the message passing of Equation 3 as:

mt
v =

∑
u∈Nπv

MLP(htu) +
∑

u∈N (sp)
v

1

svu
MLPsp(h

t
u), (4)

whereN (sp)
v are neighbors satisfying 1 < svu ≤ s(max), and s(max) is a hyperparameter. To maintain

the same number of trainable parameters as in GHN-1, we decrease MLPs’ sizes appropriately.
Despite its simplicity, this approach is effective (see the comparison to stacking GHNs in § C.2.1).
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4.3 Meta-batching Architectures During Training

GHN-1 updates its parameters θ based on a single architecture sampled for each batch of images
(Equation 2). In vanilla SGD training, larger batches of images often speed up convergence by
reducing gradient noise and improve model’s performance [66]. Therefore, we define a meta-batch
bm as the number of architectures sampled per batch of images. Both the parameter prediction and the
forward/backward passes through the architectures in a meta-batch can be done in parallel. We then
average the gradients across bm to update the parameters θ ofHD: ∇θL = 1/bm

∑bm
i=1∇θLi. Further

analysis of the meta-batching effect on the training loss and convergence speed is presented in § B.2.3.

5 Experiments
We focus the evaluation of GHN-2 on our parameter prediction task (§ 5.1). In addition, we show
beneficial side-effects of i) learning a stronger neural architecture representation using GHN-2 in
analyzing networks (§ 5.2) and ii) predicting parameters for fine-tuning (§ 5.3). We provide further
experimental and implementation details, as well as more results supporting our arguments in § C.

Datasets. We use the DEEPNETS-1M dataset of architectures (§ 3) as well as two image classification
datasets D1 (CIFAR-10 [15]) and D2 (ImageNet [1]). CIFAR-10 consists of 50k training and 10k
test images of size 32×32×3 and 10 object categories. ImageNet is a larger scale dataset with 1.28M
training and 50k test images of variable size and 1000 fine-grained object categories. We resize Ima-
geNet images to 224×224×3 following [19, 24]. We use 5k/50k training images as a validation set in
CIFAR-10/ImageNet and 500 validation architectures of DEEPNETS-1M for hyperparameter tuning.

Baselines. Our baselines include GHN-1 and a simple MLP that only has access to operations, but
not to the connections between them. This MLP baseline is obtained by replacing the GatedGNN with
an MLP in our GHN-2. Since GHNs were originally introduced for small architectures of∼ 50 nodes
and only trained on CIFAR-10, we reimplement5 them and scale them up by introducing minor modifi-
cations to their decoder that enable their training on ImageNet and on larger architectures of up to 1000
nodes (see § B.1 for details). We use the same hyperparameters to train the baselines and GHN-2.

Iterative optimizers. In the parameter prediction experiments, we also compare our model to stan-
dard optimization methods: SGD and Adam [3]. We use off-the-shelf hyperparameters common in the
literature [24, 19, 32, 67–69]. On CIFAR-10, we train evaluation architectures with SGD/Adam, ini-
tial learning rate η = 0.025 / η = 0.001, batch size b = 96 and up to 50 epochs. With Adam, we train
only 300 evaluation architectures as a rough estimation of an average performance. On ImageNet, we
train them with SGD, η = 0.1 and b = 128, and, for computational reasons (given 1402 evaluation ar-
chitectures in total), we limit training with SGD to 1 epoch. We have also considered meta-optimizers,
such as [17, 18]. However, we were unable to scale them to diverse and large architectures of our
DEEPNETS-1M, since their LSTM requires a separate hidden state for every trainable parameter in the
architecture. The scalable variants exist [70, 71], but are hard to reproduce without open source code.

Additional experimental details. We follow [24] and train GHNs with Adam, η = 0.001 and batch
size of 64 images for CIFAR-10 and 256 for ImageNet. We train for up to 300 epochs, except for
one experiment in the ablation studies, where we train one GHN with bm = 1 eight times longer,
i.e. for 2400 epochs. All GHNs in our experiments use T = 1 propagation (Equation 3), as we
found the original T = 5 of [24] to be inefficient and it did not improve the accuracies in our task.
GHN-2 uses s(max) = 50 and bm = 8 and additionally uses LN that slightly further improves results
(see these ablations in § C.2.1). Model selection is performed on the validation sets, but the results
in our paper are reported on the test sets to enable their direct comparison.

5.1 Parameter Prediction

Experimental setup. We trained our GHN-2 and baselines on the training architectures and
training images, i.e. a separate model is trained for CIFAR-10 and ImageNet. According to our
DEEPNETS-1M benchmark, we assess whether these models can generalize to unseen in-distribution
(ID) and out-of-distribution (OOD) test architectures from our DEEPNETS-1M. We measure this
generalization by predicting parameters for the test architectures and computing their classification
accuracies on the test images of CIFAR-10 (Table 3) and ImageNet (Table 4). The evaluation architec-
tures with batch norm (BN) have running statistics, which are not learned by gradient descent [7], and

5While source code for GHNs [24] is unavailable, we appreciate the authors’ help in implementing some steps.
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hence are not predicted by our GHNs. To alleviate that, we follow [24] and evaluate the networks with
BN by computing per batch statistics with batch size of 64 images. This is further discussed in § C.1.

Results. Despite GHN-2 never observed the test architectures, GHN-2 predicts good parameters for
them making the test networks perform surprisingly well on both image datasets (Tables 3 and 4).
Our results are especially strong on CIFAR-10, where some architectures with predicted parameters
achieve up to 77.1%, while the best accuracy of training with SGD for 50 epochs is around 15% more.
We even show good results on ImageNet, where for some architectures we achieve a top-5 accuracy of
up to 48.3%. While these results are low for direct downstream applications, they are remarkable for
three main reasons. First, to train GHNs by optimizing Equation 2, we do not rely on the prohibitively
expensive procedure of training the architectures F by SGD. Second, GHNs rely on a single forward
pass to predict all parameters. Third, these results are obtained for unseen architectures, including
the OOD ones. Even in the case of severe distribution shifts (e.g. ResNet-506) and underrepresented
networks (e.g. ViT7), our model still predicts parameters that perform better than random ones. On
CIFAR-10, generalization of GHN-2 is particularly strong with a 58.6% accuracy on ResNet-50.

On both image datasets, our GHN-2 significantly outperforms GHN-1 on all test subsets of
DEEPNETS-1M with more than a 20% absolute gain in certain cases, e.g. 36.8% vs 13.7% on
the BN-FREE networks (Table 3). Exploiting the structure of computational graphs is a critical
property of GHNs with the accuracy dropping from 66.9% to 42.2% on ID (and even more on
OOD) architectures when we replace the GatedGNN of GHN-2 with an MLP. Compared to iterative
optimization methods, GHN-2 predicts parameters achieving an accuracy similar to ∼2500 and
∼5000 iterations of SGD on CIFAR-10 and ImageNet respectively. In contrast, GHN-1 performs
similarly to only ∼500 and ∼2000 (not shown in Table 4) iterations respectively. Comparing SGD to
Adam, the latter performs worse in general except for the ViT architectures similar to [72, 20].

To report speeds on ImageNet in Table 4, we use a dedicated machine with a single NVIDIA
V100-32GB and Intel Xeon CPU E5-1620 v4@ 3.50GHz. So for SGD these numbers can be reduced
by using faster computing infrastructure and more optimal hyperparameters [73]. Using our setup,

Table 3: CIFAR-10 results of predicted parameters for unseen ID and OOD architectures of
DEEPNETS-1M. Mean (±standard error of the mean) accuracies are reported (random chance
≈10%). †The number of parameter updates.

METHOD #upd† ID-TEST OOD-TEST
avg max WIDE DEEP DENSE BN-FREE RESNET/VIT

MLP 1 42.2±0.6 60.2 22.3±0.9 37.9±1.2 44.8±1.1 23.9±0.7 17.7/10.0
GHN-1 1 51.4±0.4 59.9 43.1±1.7 48.3±0.8 51.8±0.9 13.7±0.3 19.2/18.2
GHN-2 1 66.9±0.3 77.1 64.0±1.1 60.5±1.2 65.8±0.7 36.8±1.5 58.6/11.4

Iterative optimizers (all architectures are ID in this case)
SGD (1 epoch) 0.5×103 46.1±0.4 66.5 47.2±1.1 34.2±1.1 45.3±0.7 18.0±1.1 61.8/34.5
SGD (5 epochs) 2.5×103 69.2±0.4 82.4 71.2±0.3 56.7±1.6 67.8±0.9 29.0±2.0 78.2/52.5
SGD (50 epochs) 25×103 88.5±0.3 93.1 88.9±1.2 84.5±1.2 87.3±0.8 45.6±3.6 93.5/75.7
Adam (50 epochs) 25×103 84.0±0.8 89.5 82.0±1.6 76.2±2.6 84.8±0.4 38.8±4.8 91.5/79.4

Table 4: ImageNet results on DEEPNETS-1M. Mean (±standard error of the mean) top-5 accuracies
are reported (random chance ≈0.5%). ∗Estimated on ResNet-50 with batch size 128.

METHOD #upd GPU sec. CPU sec. ID-TEST OOD-TEST
avg avg avg max WIDE DEEP DENSE BN-FREE RESNET/VIT

GHN-1 1 0.3 0.5 17.2±0.4 32.1 15.8±0.9 15.9±0.8 15.1±0.7 0.5±0.0 6.9/0.9
GHN-2 1 0.3 0.7 27.2±0.6 48.3 19.4±1.4 24.7±1.4 26.4±1.2 7.2±0.6 5.3/4.4

Iterative optimizers (all architectures are ID in this case)
SGD (1 step) 1 0.4 6.0 0.5±0.0 0.7 0.5±0.0 0.5±0.0 0.5±0.0 0.5±0.0 0.5/0.5
SGD (5000 steps) 5k 2×103 3×104 25.6±0.3 50.7 26.2±1.4 13.2±1.1 25.4±1.1 4.8±0.8 34.8/24.3
SGD (10000 steps) 10k 4×103 6×104 37.7±0.6 62.0 38.7±1.6 22.1±1.4 36.3±1.2 8.0±1.2 49.0/33.4
SGD (100 epochs) 1000k 6×105∗ 6×107∗ − − − − − 92.9/72.2

6Large architectures with bottleneck layers such as ResNet-50 do not appear during training.
7Architectures such as ViT do not include BN and, except for the first layer, convolutions – the two most

frequent operations in the training set.
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SGD requires on average 104× more time on a GPU (105× on a CPU) to obtain parameters that
yield performance similar to GHN-2. As a concrete example, AlexNet [74] requires around 50 GPU
hours (on our setup) to achieve a 81.8% top-5 accuracy, while on some architectures we achieve
≥48.0% in just 0.3 GPU seconds.

Table 5: Ablating GHN-2 on CIFAR-10. An
average rank of the model is computed across all
ID and OOD test architectures.

MODEL ID-TEST OOD-TEST AVG. RANK

GHN-2 66.9±0.3 56.8±0.8 1.9

1000 training architectures 65.1±0.5 52.5±1.0 2.6
No normalization (§ 4.1) 62.6±0.6 47.1±1.2 3.9
No virtual edges (§ 4.2) 61.5±0.4 53.9±0.6 4.1
No meta-batch (bm = 1, § 4.3) 54.3±0.3 47.5±0.6 5.5
bm = 1, train 8× longer 62.4±0.5 51.9±1.0 3.7
No GatedGNN (MLP) 42.2±0.6 32.2±0.7 7.4

GHN-1 51.4±0.4 39.2±0.9 6.8
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Figure 3: GHN-2 with meta batch bm =
8 versus bm = 1 for different numbers of
training architectures on CIFAR-10.

Ablations (Table 5) show that all three components proposed in § 4 are important. Normalization
is particularly important for OOD generalization with the largest drops on the WIDE and BN-FREE
networks (see § C.2.1). Using meta-batching (bm = 8) is also essential and helps stabilize training
and accelerate convergence (see § B.2). We also confirm that the performance gap between bm = 1
and bm = 8 is not primarily due to the observation of more architectures, since the ablated GHN-2
with bm = 1 trained eight times longer is still inferior. The gap between bm = 8 and bm = 1 becomes
pronounced with at least 1k training architectures (Fig. 3). When training with fewer architectures
(e.g. 100), the GHN with meta-batching starts to overfit to the training architectures. Given our chal-
lenging setup with unseen evaluation architectures, it is surprising that using 1k training architectures
already gives strong results. However, OOD generalization degrades in this case compared to using
all 1M architectures, especially on the BN-FREE networks (see § B.2). When training GHNs on
just a few architectures, the training accuracy soars to the level of training them with SGD. With
more architectures, it generally decreases indicating classic overfitting and underfitting cases.

5.2 Property Prediction

Representing computational graphs of neural architectures is a challenging problem [75–79]. We
verify if GHNs are capable of doing that out-of-the-box in the property prediction experiments. We
also experiment with architecture comparison in § C.2.4. Our hypothesis is that by better solving our
parameter prediction task, GHNs should also better solve graph representation tasks.

Experimental setup. We predict the properties of architectures given their graph embeddings
obtained by averaging node features8. We consider four such properties (see § C.2.3 for details):
• Accuracy on the “clean” (original) validation set of images;
• Accuracy on a corrupted set (obtained by adding the Gaussian noise to images following [53]);
• Inference speed (latency or GPU seconds per a batch of images);
• Convergence speed (the number of SGD iterations to achieve a certain training accuracy).

Estimating these properties accurately can have direct practical benefits. Clean and corrupted accu-
racies can be used to search for the best performing architectures (e.g. for the NAS task); inference
speed can be used to choose the fastest network, so by estimating these properties we can trade-off ac-
curate, robust and fast networks [12]. Convergence speed can be used to find networks that are easier
to optimize. These properties correlate poorly with each other and between CIFAR-10 and ImageNet
(§ C.2.3), so they require the model to capture different regularities of graphs. While specialized meth-
ods to estimate some of these properties exist, often as a NAS task [80–82, 30, 75], our GHNs provide
a generic representation that can be easily used for many such properties. For each property, we train
a simple regression model using graph embeddings and ground truth property values. We use 500
validation architectures of DEEPNETS-1M for training the regression model and tuning its hyperpa-
rameters (see § C.2.3 for details). We then use 500 testing architectures of DEEPNETS-1M to measure
Kendall’s Tau rank correlation between the predicted and ground truth property values similar to [80].

8A fixed size graph embedding for the architecture a can be computed by averaging the output node features:
ha = 1

|V |
∑
v∈V hTv , where ha ∈ Rd and d is the dimensionality of node features.
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Additional baseline. We compare to the Neural Predictor (NeuPred) [80]. NeuPred is based on
directed graph convolution and is developed for accuracy prediction achieving strong NAS results.
We train a separate such NeuPred for each property from scratch following their hyperparameters.
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Figure 4: Property prediction of neural networks in
terms of correlation (higher is better). Error bars denote
the standard deviation across 5 runs.

Results. GHN-2 consistently outperforms
the GHN-1 and MLP baselines as well
as NeuPred (Fig. 4). In § C.2.3, we also
provide results verifying if higher correlations
translate to downstream gains. For example,
on CIFAR-10 by choosing the most accurate
architecture according to the regression model
and training it from scratch following [19, 24],
we obtained a 97.26%(±0.09) accuracy, which
is competitive with leading NAS approaches,
e.g. [19, 24, 32, 67–69]. In contrast, the
network chosen by the regression model trained on the GHN-1 embeddings achieves 95.90%(±0.08).

5.3 Fine-tuning Predicted Parameters

Neural networks trained on ImageNet and other large datasets have proven useful in diverse visual
tasks in the transfer learning setup [83–87, 20]. Therefore, we explore how predicting parameters
on ImageNet with GHNs compares to pretraining them on ImageNet with SGD in such a setup. We
consider low-data tasks as they often benefit more from transfer learning [86, 87].

Experimental setup. We perform two transfer-learning experiments. The first experiment is fine-
tuning the predicted parameters on 1,000 training samples (100 labels per class) of CIFAR-10. We
fine-tune ResNet-50, Visual Transformer (ViT) and a 14-cell architecture based on the DARTS best
cell [19]. The hyperparameters of fine-tuning (initial learning rate and weight decay) are tuned on
200 validation samples held-out of the 1,000 training samples. The number of epochs is fixed to 50 as
in § 5.1 for simplicity. In the second experiment, we fine-tune the predicted parameters on the object
detection task. We closely follow the experimental protocol and hyperparameters from [88] and train
the networks on the Penn-Fudan dataset [89]. The dataset contains only 170 images and the task is
to detect pedestrians. Therefore this task is also well suited for transfer learning. Following [88], we
replace the backbone of a Faster R-CNN with one of the three architectures. To perform transfer learn-
ing with GHNs, in both experiments we predict the parameters of a given architecture using GHNs
trained on ImageNet. We then replace the ImageNet classification layer with the target task-specific
layers and fine-tune the entire network on the target task. We compare the results of GHNs to He’s
initialization [57] and the initialization based on pretraining the parameters on ImageNet with SGD.

Table 6: CIFAR-10 test set accuracies and Penn-Fudan object detection average precision (at IoU=0.50)
after fine-tuning the networks using SGD initialized with different methods. Average results and standard
deviations for 3 runs with different random seeds are shown. For each architecture, similar GHN-2-based and
ImageNet-based results are bolded.*Estimated on ResNet-50.

INITIALIZATION
METHOD

GPU sec.
to init.*

100-SHOT CIFAR-10 PENN-FUDAN OBJECT DETECTION

RESNET-50 VIT DARTS RESNET-50 VIT DARTS

He’s [57] 0.003 41.0±0.4 33.2±0.3 45.4±0.4 0.197±0.042 0.144±0.010 0.486±0.035
GHN-1 (trained on ImageNet) 0.6 46.6±0.0 23.3±0.1 49.2±0.1 0.433±0.013 0.0±0.0 0.468±0.024
GHN-2 (trained on ImageNet) 0.7 56.4±0.1 41.4±0.6 60.7±0.3 0.560±0.019 0.436±0.032 0.785±0.032

ImageNet (1k pretraining steps) 6×102 45.4±0.3 44.3±0.1 62.4±0.3 0.302±0.022 0.182±0.046 0.814±0.033
ImageNet (2.5k pretraining steps) 1.5×103 55.4±0.2 50.4±0.3 70.4±0.2 0.571±0.056 0.322±0.073 0.823±0.022
ImageNet (5 pretraining epochs) 3×104 84.6±0.2 70.2±0.5 83.9±0.1 0.723±0.045 0.391±0.024 0.827±0.053
ImageNet (final epoch) 6×105 89.2±0.2 74.5±0.2 85.6±0.2 0.876±0.011 0.468±0.023 0.881±0.023

Results. The CIFAR-10 image classification results of fine-tuning the parameters predicted by our
GHN-2 are≥10 percentage points better (in absolute terms) than fine-tuning the parameters predicted
by GHN-1 or training the parameters initialized using He’s method (Table 6). Similarly, the object de-
tection results of GHN-2-based initialization are consistently better than both GHN-1 and He’s initial-
izations. The GHN-2 results are a factor of 1.5-3 improvement over He’s for all the three architectures.
Overall, the two experiments clearly demonstrate the practical value of predicting parameters using our
GHN-2. Using GHN-1 for initialization provides relatively small gains or hurts convergence (for ViT).
Compared to pretraining on ImageNet with SGD, initialization using GHN-2 leads to performance sim-
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ilar to 1k-2.5k steps of pretraining on ImageNet depending on the architecture in the case of CIFAR-10.
In the case of Penn-Fudan, GHN-2’s performance is similar to ≥1k steps of pretraining with SGD.
In both experiments, pretraining on ImageNet for just 5 epochs provides strong transfer learning
performance and the final ImageNet checkpoints are only slightly better, which aligns with previous
works [85]. Therefore, further improvements in the parameter prediction models appear promising.

6 Related Work
Our proposed parameter prediction task, objective in Equation 2 and improved GHN are related
to a wide range of machine learning frameworks, in particular meta-learning and neural architecture
search (NAS). Meta-learning is a general framework [16, 90] that includes meta-optimizers
and meta-models, among others. Related NAS works include differentiable [19] and one-shot
methods [12]. See additional related work in § D.

Meta-optimizers. Meta-optimizers [17, 18, 71, 91, 92] define a problem similar to our task, but
where HD is an RNN-based model predicting the gradients ∇w, mimicking the behavior of
iterative optimizers. Therefore, the objective of meta-optimizers may be phrased as learning to
optimize as opposed to our learning to predict parameters. Such meta-optimizers can have their own
hyperparameters that need to be tuned for a given architecture a and need to be run expensively (on
the GPU) for many iterations following Equation 1.

Meta-models. Meta-models include methods based on MAML [93], ProtoNets [94] and auxiliary
nets predicting task-specific parameters [95–98]. These methods are tied to a particular architecture
and need to be trained from scratch if it is changed. Several recent methods attempt to relax the choice
of architecture in meta-learning. T-NAS [99] combines MAML with DARTS [19] to learn both the
optimal architecture and its parameters for a given task. However, the best network, a, needs to be
trained using MAML from scratch. Meta-NAS [100] takes a step further and only requires fine-tuning
of a on a given task. However, the a is obtained from a single meta-architecture and so its choice is
limited, preventing parameter prediction for arbitrary a. CATCH [101] follows a similar idea, but uses
reinforcement learning to quickly search for the best a on the specific task. Overall meta-learning
mainly aims at generalization across tasks, often motivated by the few-shot learning problem. In
contrast, our parameter prediction problem assumes a single task (here an image dataset), but aims at
generalization across architectures a with the ability to predict parameters in a single forward pass.

One-shot NAS. One-shot NAS aims to learn a single “supernet” [102, 12, 103] that can be used to
estimate the performance of smaller nets (subnets) obtained by some kind of pruning the supernet, fol-
lowed by training the best chosen a from scratch with SGD. Recent models, in particular BigNAS [12]
and OnceForAll (OFA) [102], eliminate the need to train subnets. However, the fundamental limita-
tion of one-shot NAS is poor scaling with the number of possible computational operations [24]. This
limits the diversity of architectures for which parameters can be obtained. For example, all subnets
in OFA are based on MobileNet-v3 [33], which does not allow to solve our more general parameter
prediction task. To mitigate this, SMASH [104] proposed to predict some of the parameters using
hypernetworks [14] by encoding architectures as a 3D tensor. Graph HyperNetworks (GHNs) [24]
further generalized this approach to “arbitrary” computational graphs (DAGs), which allowed them
to improve NAS results. GHNs focused on obtaining reliable subnetwork rankings for NAS and did
not aim to predict large-scale performant parameters. We show that the vanilla GHNs perform poorly
on our parameter prediction task mainly due to the inappropriate scale of predicted parameters,
lack of long-range interactions in the graphs, gradient noise and slow convergence when optimizing
Equation 2. Conventionally to NAS, GHNs were also trained in a quite constrained architecture
space [105]. We expand the architecture space adopting GHNs for a more general problem.

7 Conclusion
We propose a novel framework and benchmark to learn and evaluate neural parameter prediction
models. Our model (GHN-2) is able to predict parameters for very diverse and large-scale
architectures in a single forward pass in a fraction of a second. The networks with predicted
parameters yield surprisingly high image classification accuracy given the extremely challenging
nature of our parameter prediction task. However, the accuracy is still far from networks trained with
handcrafted optimization methods. Bridging the gap is a promising future direction. As a beneficial
side-effect, GHN-2 learns a strong representation of neural architectures as evidenced by our property
prediction evaluation. Finally, parameters predicted using GHN-2 trained on ImageNet benefit
transfer learning in the low-data regime. This motivates further research towards solving our task.
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A DEEPNETS-1M Details
A.1 Generating DEEPNETS-1M using DARTS

In this section, we elaborate on our description in § 2.1 about how DARTS [19] defines networks. We
also elaborate on our discussion in § 3 about how we modify the DARTS framework to generate our
DEEPNETS-1M dataset of architectures and summarize these modifications here, in Table 7. We
visualize examples of architectures defined using DARTS [19] and corresponding computational
graphs obtained using our code (Fig. 5).

Overall architecture structure. At a high level, all our ID and OOD networks are composed
of a stem, repeated normal and reduction cells, global average pooling and a classification head
(Fig. 5, (a)). We optionally sample fully-connected layers between the global pooling and the last
classification layer and/or replace global pooling with fully connected layers, e.g. as in VGG [25].
The stem in DARTS, and in other NAS works, is predefined and fixed for each image dataset. We
uniformly sample either a CIFAR-10 style or ImageNet style stem, so that our network space is unified
for both image datasets. To prevent extreme GPU memory consumption when using a non-ImageNet
stem for ImageNet images, we additionally use a larger stride in the stem that does not affect the graph
structure. At test time, however, we can predict parameters for networks without these constraints,
but the performance of the predicted parameters might degrade accordingly. For example, we can
successfully predict parameters for ResNet-50 (Fig. 5, (e)), which has 13 normal and 3 reduction
cells placed after the 3rd, 7th and 13th cells. ResNet-50’s cells (Fig. 5, (d)) are similar to those of
ResNet-18 (Fig. 5, (b)), but have 1×1 bottleneck layers.

Within and between cell connectivity. Within each cell and between them, there is a certain pattern
to create connections in DARTS (Fig. 5, (b,d)): each cell receives features from the two previous
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cells, each summation node can only receive features from two nodes, the last concatenation node
can receive features from an arbitrary number of nodes. But due to the presence of the Zero (‘none’)
and Identity (‘skip connection’) operations, we can enable any connectivity. We represent operations
as nodes9 and drop redundant edges and nodes. For example, if the node performs the Zero operation,
we remove the edges connected to that node. This can lead to a small fraction of disconnected
graphs, which we remove from the training/testing sets. If the node performs the Identity operation,
we remove the node, but keep corresponding edges. We also omit ReLU operations and other
nonlinearities in a graph representation to avoid significantly enlarging graphs, since the position of
nonlinearities w.r.t. other operations is generally consistent across architectures (e.g. all convolutions
are preceded by ReLUs except the first layer). This leads to graphs visualized in Fig. 5, (c,e).

Operations. The initial choice of operations in DARTS is quite standard in NAS. In normal cells, each
operation returns the tensor of the same shape as it receives. So any differentiable operation that can
preserve the shape of the input tensor can be used, therefore extending the set of operations is relatively
trivial. In reduction cells, spatial resolution is reduced by a factor of 2, so some operations can have
stride 2 there. In both cells, there are summation and concatenation nodes that aggregate features
from several operations into one tensor. Concatenation (across channels) is used as the final node in a
cell. To preserve channel dimensions after concatenating many features, 1×1 convolutions are used as
needed. For the Squeeze&Exicte (SE) and Visual Transformer (ViT) operations, we use open source
implementations10 with default configurations, e.g. 8 heads in the multihead self-attention of ViT.

(a) (b) (c)

(d) (e)
Figure 5: (a) Network’s high-level structure introduced in [29] and employed by many following papers on
network design, including DARTS [19] and ours, where N≥ 1; (b) A residual block [8] in terms of DARTS
normal and reduction cells, where green nodes denote outputs from the two previous cells, blue nodes denote
summation, a yellow node denotes concatenation†; edges denote operations, ‘none’ indicates dropping the edge‡;
the reduction cell has the same structure in ResNets, but decreases spatial resolution by 2 using a downsample
operation and stride 2 in operations, at the same time, optionally increasing the channel dimensionality by
2. (c) The result of combining (a) and (b) for 8 cells using our code to build an analogous of the ResNet-18
architecture?. (d) A residual block of ResNet-50 with 1×1 bottleneck layers defined using DARTS and (e) the
graph built using our code, where 3 reduction cells are placed as in the original ResNet-50 architecture.

9In DARTS, the operations are placed on the edges, except for inputs, summations and concatenation (Fig. 5).
10SE: https://github.com/ai-med/squeeze_and_excitation/blob/master/squeeze_and_

excitation/squeeze_and_excitation.py, ViT: https://github.com/lucidrains/vit-pytorch/
blob/main/vit_pytorch/vit.py

†Concatenation is redundant in ResNets and removed from our graphs due to only one input node in cells.
‡In ResNets [8], there is no skip connection between the input of a given cell and the output of the cell

before the previous one.
?Note that ResNets of [8] commonly employed in practice have 3 reduction cells instead of 2 and have other

minor differences (e.g. the order of convolution, BN and ReLU, down sampling convolution type, bottleneck
layers, etc.). We still can predict parameters for them, but such architectures would be further away from the
training distribution, so the predicted parameters might have significantly lower performance.
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Table 7: Summary of differences between the DARTS design space and ours. *Means implementation-wise
possibility of predicting parameters given a trained GHN, and does not mean our testing ID architectures, which
follow the training design protocol. Overall, from the implementation point of view, our trained GHNs allow to
predict parameters for arbitrary DAGs composed of our 15 primitives with the parameters of arbitrary shapes¶.
We place ResNet-50 in a separate column even though it is one of the evaluation architectures of DEEPNETS-1M,
because it has different properties as can be seen in the table.

PROPERTY DARTS DEEPNETS-1M RESNET-50 TESTING GHN*

Unified style across image datasets 7 3 7 3

VGG style classification heads [25] 7 3 7 3

Visual Transformer stem [20] 7 3 7 3

Channel expansion ratio 2 1 or 2 2 arbitrary
Bottleneck layers (e.g. in ResNet-50 [8]) 7 7 3 3

Reduction cells position (w.r.t. total depth) 1/3, 2/3 1/3, 2/3 3,7,17 cells arbitrary
Networks w/o 1×1 preprocessing layers in cells 7 3 3 3

Networks w/o batch norm 7 3 7 3

A.2 DEEPNETS-1M Statistics

We show the statistics of the key properties of our DEEPNETS-1M in Fig. 6 and more examples of
computational graphs for different subsets in Fig. 7.
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Figure 6: Visualized statistics of DEEPNETS-1M. (a) A violin plot of the number of nodes showing the
distribution shift for the DEEP and DENSE subsets. (b) Node types (primitives) showing the distribution shift
for the BN-FREE subset. (c) Number of initial channels in networks (for TRAIN, the number is for training
GHNs on CIFAR-10). Here, the distribution shift is present for all test subsets (due to computational challenges
of training GHNs on wide architectures), but the largest shift is for WIDE. (d) Total numbers of trainable
parameters in case of CIFAR-10, where the distribution shifts are similar to those for the number of channels. (e)
Average shortest path length versus average node degree (other subsets that are not shown follow the distribution
of TRAIN), confirming that nodes of the DENSE subset have generally more dense connections (larger degrees),
while in DEEP the networks are deeper (the shortest paths tend to be longer). (f) The validation error for 1000
VAL +TEST architectures (trained with SGD for 50 epochs) versus their average shortest path lengths, indicating
the “sweet spot” of architectures with strong performance (same axes as in [46]). (g) Same as (f), but with
the y axis being the top-5 validation error on ImageNet of the same architectures trained for 1 epoch according
to our experiments. (h) The distribution of the distances between the architectures of a given test subset and
the ones from a subset of TRAIN computed using the Hungarian algorithm [43], confirming that the evaluation
architectures are different from the training ones.

¶While we predefine a wide range of possible shapes in our GHNs according to § B.1, in the rare case of
using the shape that is not one of the predefined values, we use the closest values, which worked reasonably well
in many cases.
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Figure 7: Examples of graphs in each subset of our DEEPNETS-1M visualized using NetworkX [44].

B GHN Details

B.1 Baseline GHN: GHN-1

GHNs were designed for NAS, which typically make strong assumptions about the choice of
operations and their possible dimensions to make search and learning feasible. For example, non-
separable 2D convolutions (e.g. with weights like 512×512×3×3 in ResNet-50) are not supported.
Our parameter prediction task is more general than NAS, and tackling it using the vanilla GHNs
of [24] is not feasible (mainly, in terms of GPU memory and training efficiency) as we show in § C.2.1
(Table 8). So we first make the following modifications to GHNs and denote this baseline as GHN-1.

1. Compact decoder: We support the prediction of full 4D weights of shape <out channels
× input channels × height × width> that is required for non-separable 2D convolutions.
Using an MLP decoder of vanilla GHNs [24] would require it to have a prohibitive number
of parameters (e.g. ∼4 billion parameters, see Table 8). To prevent that, we use an MLP
decoder only to predict a small 3D tensor and then apply a 1×1 convolutional layer across
the channels to increase their number followed by reshaping it to a 4D tensor.

2. Diverse channel dimensions: To enable prediction of parameters with channel dimensions
larger than observed during training we implement a simple tiling strategy similar to [14].
In particular, instead of predicting a tensor of the maximum shape that has to be known prior
training (as done in [24]), we predict a tensor with fewer channels, but tile across channel
dimensions as needed. Combining this with #1 described above, our decoder first predicts a
tensor of shape 128×S×S , where S = 11 for CIFAR-10 and S = 16 for ImageNet. Then,
the 1×1 convolutional decoder with 256 hidden and 4096 output units transforms this tensor
to the tensor of shape 64×64×S×S. Modifications #1 and #2 can be viewed as strong
regularizers that can hinder expressive power of a GHN and the parameters it predicts, but
on the other side permit a more generic and efficient model with just around 1.6M-2M
parameters.

3. Fewer decoders: One alternative strategy to reduce the number of parameters in the decoder
of GHNs is to design multiple specialized decoders. However, this strategy does not scale
well with adding new operations. Our modifications #1 and #2 allow us to have only three
decoders: for convolutional and fully connected weights, for 1D weights and biases, such as
affine transformations in normalization layers, and for the classification layer.
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4. Shape encoding: The vanilla GHNs does not leverage the information about channel di-
mensionalities of parameters in operations. For example, the vanilla GHNs only differentiate
between 3×3 and 5×5 convolutions, but not between 512×512×3×3 and 512×256×3×3.
To alleviate that, we add two shape embedding layers: one for the spatial and one for
the channel dimensions. For the spatial dimensions (height and width of convolutional
weights) we predefine 11 possible values from 1 to S. For the channel dimensions (input
and output numbers of channels) we predefine 392 possible values from 1 to 8192. We
describe 3D, 2D and 1D tensors as special cases of 4D tensors using the value of 1 for
missing dimensionalities (e.g. 10×1×1×1 for CIFAR-10 biases in the classification layer).
The shape embedding layers transform the input shape into four (two for spatial and two
for channel dimensions) 8-dimensional learnable vectors that are concatenated to obtain
a 32-dimensional vector. This vector is summed with a 32-dimensional vector encoding
one of the 15 operation types (primitives). In the rare case of feeding the shape that is not
one of the predefined values, we look up for the closest value. This can work well in some
cases, but can also hurt the quality of predicted parameters, so some continuous encoding as
in [41] can be used in future work.

B.2 Our improved GHN: GHN-2

B.2.1 GHN-2 Architecture

Our improved GHN-2 is obtained by adding to GHN-1 the differentiable normalization of predicted
parameters, virtual edges (and the associated ‘mlp_ve’ module, see the architecture below), meta-
batching and layer normalization (and the associated ‘ln’ module). A high-level PyTorch-based
overview of the GHN-2 model architecture used to predict the parameters for ImageNet is shown
below (see our code for implementation details).

(ghn): GHN( # our hypernetwork H_D with total 2,319,752 parameters (theta)
(gcn): GCNGated( # Message Passing for Equations 3 and 4
(mlp): MLP(
(fc): Sequential(
(0): Linear(in_features=32, out_features=16, bias=True)
(1): ReLU()
(2): Linear(in_features=16, out_features=32, bias=True)
(3): ReLU()
)
)
(mlp_ve): MLP( # only in GHN-2 (see Eq. 4)
(fc): Sequential(
(0): Linear(in_features=32, out_features=16, bias=True)
(1): ReLU()
(2): Linear(in_features=16, out_features=32, bias=True)
(3): ReLU()
)
)
(gru): GRUCell(32, 32) # all GHNs use d=32 for input, hidden and output node feature dimensionalities
)
(ln): LayerNorm((32,), eps=1e-05, elementwise_affine=True) # only in GHN-2
(shape_embed_spatial): Embedding(11, 8) # encodes the spatial shape of predicted params
(shape_embed_channel): Embedding(392, 8) # encodes the channel shape of predicted params
(op_embed): Embedding(16, 32) # 15 primitives plus one extra embedding for dummy nodes
(decoder): Decoder(
(fc): Sequential(
(0): Linear(in_features=32, out_features=32768, bias=True)
(1): ReLU()
) # predicts a 128x16x16 tensor
(conv): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
(1): ReLU()
(2): Conv2d(256, 4096, kernel_size=(1, 1), stride=(1, 1))
) # predicts a 64x64x16x16 tensor
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(class_layer_predictor): Sequential(
(0): ReLU()
(1): Conv2d(64, 1000, kernel_size=(1, 1), stride=(1, 1))
) # predicts 64x1000 classification weights given the 64x64x16x16 tensor
)
(norm_layers_predictor): Sequential(
(0): Linear(in_features=32, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=128, bias=True)
) # predicts 1x64 weights and 1x64 biases given the 1x32 node embeddings
(bias_predictor): Sequential(
(0): ReLU()
(1): Linear(in_features=64, out_features=1000, bias=True)
) # predicts 1x1000 classification biases given the 64x64x16x16 tensor
)

B.2.2 Differentiable Normalization of Predicted Parameters

We analyze in more detail the effect of normalizing predicted parameters (Fig. 8).

Setup. As we discussed in § 4.1, Chang et al. [59] proposed a method to initialize a hypernetwork
to stabilize the activations in the network for which the parameters are predicted. However, this
technique requires knowing upfront the shapes of the predicted parameters, and therefore is not
applicable out-of-the-box in our setting, where we predict the parameters of diverse architectures with
arbitrary shapes of weights. So, instead we apply operation-dependent normalizations. We analyze
the effect of this normalization by taking a GHN in the beginning and end of training on CIFAR-10
and predicting parameters of ResNet-50. To compute the variance of activations in the ResNet-50,
we forward pass a batch of test images through the predicted parameters.

Observations. The activations obtained using GHN-1 explode after training, which aligns with the
analysis of [59] (this is more obvious on the left of Fig. 8, where a linear scale is used on the y axis).
For GHN-2, in the beginning of training the activations match the ones of ResNet-50 initialized
randomly using Kaiming He’s method [57], which validates the choice of our normalization equations
in § 4.1. By the end of training, the activations of models for the random-based and the GHN-2-based
cases decrease (perhaps, due to the weight decay), however, the ones of GHN-2 reduce less, indicating
that the predicted parameters do not reach the state of those trained with SGD from scratch. In
contrast, the activations corresponding to GHN-1 have small values in the beginning, but explode by
the end of training. Matching the activations of the models trained with SGD can be useful to improve
training of GHNs and, for example, to make fine-tuning of predicated parameters easier as we show
in § 5.3, where the parameters predicted by GHN-1 are shown difficult to be fine-tuned with SGD.
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Figure 8: The effect of normalizing predicted parameters on the variance of activations in the first
several layers of ResNet-50: a linear (left) and log (right) scale on the y axis.

B.2.3 Meta-batching

We analyze how meta-batching affects the training loss when training GHNs on CIFAR-10 (Fig. 9).
The loss of the GHN-2 with bm = 8 is less noisy and is lower throughout the training compared to
using bm = 1. In fact, the loss of bm = 1 is unstable to the extent that oftentimes the training fails
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due to the numerical overflow, in which case we ignore the current architecture and resample a new
one. For example, the standard deviation of gradient norms with bm = 8 is significantly lower than
with bm = 1: 18 vs 145 with means 2.7 and 7.4 respectively. Training the model with bm = 1 eight
times longer (Fig. 9, right) boosts the performance of predicted parameters (Table 8), but still does
not reach the level of bm = 8; it also still suffers from the aforementioned numerical issues and does
not leverage the parallelism of bm = 8 (all architectures in a meta-batch can be processed in parallel).
Further increasing the meta-batch size is an interesting avenue for future research.
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Figure 9: Effect of using more architectures per batch of images on the training loss (left) and
comparison to training longer (right). In the figure on the right, we shrink the x axis of the bm = 1
case, so that both plots can be compared w.r.t. the total number of epochs.

C Additional Experiments and Details

C.1 Experimental Details

Training GHNs. We train all GHNs for 300 epochs using Adam with an initial learning rate 0.001,
batch size of 64 images for CIFAR-10 (256 for ImageNet), weight decay of 1e-5. The learning rate
is decayed after 200 and 250 epochs. On ImageNet GHN-2’s validation accuracy plateaued faster
(in terms of training epochs), so we stopped training after 150 epochs decaying it after 100 and 140
epochs.

Evaluation of networks with BN using GHNs. While our GHNs predict all trainable parameters,
batch norm networks have running statistics that are not learned by gradient descent [7], and so are
not predicted by GHNs. To obtain these statistics, we evaluate the networks with BN by computing
per batch statistics on the test set as in [24] using a batch size 64. Another alternative we have
considered is updating the running statistics by forward passing several batches of the training
or testing images through each evaluation network (no labels, gradients or parameter updates are
required for this stage). For example on CIFAR-10 if we forward pass 200 batches of the training
images (takes less than 10 seconds on a GPU), we obtain a higher accuracy of 71.7% on ID-TEST
compared to 66.9% when the former strategy is used. On ImageNet, the difference between the two
strategies is less noticeable. For both strategies, the results can slightly change depending on the
order of images for which the statistics is estimated.

C.2 Additional Results

C.2.1 Additional Ablations

We present results on CIFAR-10 for different variants of GHNs (Table 8) in addition to those presented
in Tables 3 and 5. Overall, different GHN variants show worse or comparable results on all evaluation
architectures compared to our GHN-2, while in some cases having too many trainable parameters
making training infeasible in terms of GPU memory or being less efficient to train (e.g. with T = 5
propagation steps). For ViT, GHN-2 is worse compared to other GHN variants, which requires
further investigation.
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Table 8: CIFAR-10 results of predicted parameters for the evaluation architectures of DEEPNETS-1M. Mean
(±standard error of the mean) accuracies are reported. Different ablated GHN-2 models are evaluated. *GPU
seconds per a batch of 64 images and bm architectures. **In [24] the GHNs have fewer parameters due to a
more constrained network design space (as discussed in B.1) and applying specialized decoders for different
operations. The best result in each column is bolded, the best results with bm = 1 (excluding training 8 ×
longer) are underlined.

MODEL Norm Virt. M. batch #GHN Train. ID-TEST OOD-TEST
ŵp edges bm = 8 params speed* avg max WIDE DEEP DENSE BN-FREE RESNET/VIT

GHN-2 3 3 3 1.6M 3.6 66.9±0.3 77.1 64.0±1.1 60.5±1.2 65.8±0.7 36.8±1.5 58.6/11.4

1000 archs 3 3 3 1.6M 3.6 65.1±0.5 78.4 61.5±1.6 56.0±1.5 65.0±0.9 27.6±1.1 58.2/10.5
100 archs 3 3 3 1.6M 3.6 47.1±0.8 77.1 38.8±1.9 28.3±1.6 41.9±1.5 11.0±0.2 38.7/10.3
No normalization 7 3 3 1.6M 3.6 62.6±0.6 75.9 52.3±2.1 59.5±1.1 62.3±1.2 14.4±0.4 58.3/17.0
No virtual edges 3 7 3 1.6M 3.6 61.5±0.4 73.2 58.2±1.0 55.0±0.9 61.5±0.6 40.8±0.8 41.9/12.1
No LayerNorm 3 3 3 1.6M 3.6 64.5±0.4 75.9 62.4±1.1 59.0±1.1 64.6±0.6 39.6±1.2 55.1/8.9
No GatedGNN (MLP) 3 3 3 1.6M 1.5 42.2±0.6 60.2 22.3±0.9 37.9±1.2 44.8±1.1 23.9±0.7 17.7/10.0
Train 8× longer 3 3 7 1.6M 0.7 62.4±0.5 75.8 63.0±1.3 58.0±1.3 62.1±0.9 24.5±0.7 57.0/14.6

No Meta-batch (bm = 1) 3 3 7 1.6M 0.7 54.3±0.3 63.0 53.1±0.8 51.9±0.6 53.4±0.5 31.7±0.8 50.6/17.8
No Shape Encoding 3 3 7 1.6M 0.7 53.1±0.4 61.7 52.4±0.9 51.4±0.7 53.5±0.6 24.7±0.8 31.5/14.0
No virtual edges (VE) 3 7 7 1.6M 0.7 51.7±0.4 62.0 49.7±0.8 47.4±0.8 52.0±0.8 24.5±0.5 34.2/14.7
+Stacked GHN, no VE 3 7 7 1.6M 0.7 52.2±0.4 63.6 51.3±0.9 46.9±0.9 52.3±0.7 20.2±0.6 44.5/15.4
+Stacked GHN 3 3 7 1.6M 0.9 53.1±0.4 61.3 51.5±1.1 50.9±0.7 53.5±0.7 23.1±0.7 42.7/15.1
π = only fw (Eq. 3) 3 3 7 1.6M 0.4 53.9±0.3 62.5 51.2±1.0 51.7±0.7 54.3±0.5 31.0±0.7 49.9/11.5
T = 5 (Eq. 3) 3 3 7 1.6M 2.6 54.4±0.4 63.3 52.8±1.0 50.4±0.9 53.4±0.8 22.6±1.0 50.1/10.1
Fan-out 3 3 7 1.6M 0.7 53.8±0.4 63.6 52.6±1.0 51.2±0.8 54.3±0.8 19.8±0.6 48.5/11.1
MLP decoder 3 3 7 32M 0.7 53.1±0.4 64.0 52.9±1.0 52.5±0.7 54.0±0.8 22.1±0.5 44.1/16.3
No tiling 3 3 7 135M out of GPU memory
No tiling, MLP decoder
(as in a vanilla GHN [24]) 3 3 7 4.1B** out of GPU memory

GHN-1 7 7 7 1.6M 0.6 51.4±0.4 59.9 43.1±1.7 48.3±0.8 51.8±0.9 13.7±0.3 19.2/18.2
GHN-1 + LayerNorm 7 7 7 1.6M 0.6 50.1±0.5 58.9 43.8±1.4 47.5±0.8 50.8±1.0 11.4±0.2 49.2/16.3

C.2.2 Generalization Properties

On the OOD subsets, GHN results are lower than on ID-TEST as expected, so we inspect in more
detail how performance changes with an increased distribution shift (Fig. 10). For example, training
wider nets with SGD leads to similar or better performance, perhaps, due to increased capacity.
However, GHNs degrade with larger width, since wide architectures are underrepresented during
training for computational reasons (Table 1, Fig. 6). As for the depth and number of nodes, there is a
certain range of values (“sweet spot”) with higher performance. For architectures without batch norm
(Fig. 10, the very right column), the results of GHN-2 are strong starting from a certain depth (≥
8-10 cells) matching the ones of training with SGD from scratch (for 50 epochs on CIFAR-10 and 1
epoch on ImageNet). This can be explained by the difficulty of training models without BN from
scratch with SGD, while parameter prediction with GHN-2 is less affected by that. Generalization
appears to be worse on ImageNet, perhaps due to its more challenging nature.
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Figure 10: Generalization performance w.r.t. (from left to right): width, depth, number of nodes and
depths for architectures without batch norm. A green rectangle denotes the training regime; bars are
standard errors of the mean. Top row: CIFAR-10, bottom row: ImageNet.
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C.2.3 Property Prediction

In § 5.2, we experiment with four properties of neural architectures that can be estimated given an
architecture and image dataset:

1. “Clean” classification accuracy measured on the validation sets of CIFAR-10 and ImageNet.
2. Classification accuracy on the corrupted images, which is created by adding the Gaussian

noise of medium intensity to the validation images following [53]11: with zero mean and
the standard deviation of 0.08 on CIFAR-10 and 0.18 on ImageNet.

3. The inference speed is measured as GPU seconds required to process the entire validation set.
4. For the convergence speed, we measure the number of SGD iterations to achieve a training

top-1 accuracy of 95% on CIFAR-10 and top-5 accuracy of 10% on ImageNet.
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Figure 11: Cross correlation (Kendall’s Tau) between ground truth values of properties.

Ground truth property values. We first obtain ground truth values for each property for each of
the 500 ID-VAL and 500 ID-TEST architectures of DEEPNETS-1M trained from scratch with SGD
for 50 epochs (on CIFAR-10) and 1 epoch (on ImageNet) as described in § 5. The ground truth
values between these properties and between CIFAR-10 and ImageNet correlate poorly (Fig. 11).
Interestingly, on CIFAR-10 the architectures that rank higher on the clean images generally rank
lower on the corrupted set and vice verse (correlation is -0.40). On ImageNet the correlation between
these two properties is positive, but low (0.15). Also, the transferability of architectures between
CIFAR-10 and ImageNet is poor contrary to a common belief, e.g. with the correlation of 0.29 on the
clean and -0.06 on the corrupted sets. However, this might be due to training on ImageNet only for 1
epoch. The networks that converge faster have generally worse performance on the clean set, but tend
to perform better on the corrupted set. The networks that classify images faster (have higher inference
speed), also tend to perform better on the corrupted set. Investigating the underlying reasons for these
relationships as well as extending the set of properties would be interesting in future work.

Estimating properties by predicting parameters. A straightforward way to estimate this kind of
properties using GHNs is by predicting the architecture parameters and forward passing images as was
done in [24] for accuracy. However, this strategy has two issues: (a) the performance of parameters
predicted by GHNs is strongly affected by the training distribution of architectures (Fig. 10); (b)
estimating properties of thousands of networks for large datasets such as ImageNet can be time
consuming. Regarding (a), for example the rank correlation on CIFAR-10 between the accuracy of
the parameters predicted by GHN-2 and those trained with SGD is only 0.4 (down from 0.8 obtained
with the regression model, Fig. 4).

Training regression models. To report the results in Fig. 4, we treat the 500 ID-VAL architectures
of DEEPNETS-1M as the training ones in this experiment. We train a simple regression model for
each property using graph embeddings (obtained using MLP, GHN-1 or GHN-2) and ground truth
property values of these architectures. We use Support Vector Regression12 with the RBF kernel and
tune hyperparameters (C, gamma, epsilon) on these 500 architectures using 5-fold cross-validation.

11https://github.com/hendrycks/robustness
12https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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We then estimate the properties given a trained regression model on the 500 ID-TEST architectures
of DEEPNETS-1M and measure Kendall’s Tau rank correlation with the ground truth test values. We
repeat the experiment 5 times with different random seeds, i.e. different cross-validation folds. In
Fig. 4, we show the average and standard deviation of correlation results across 5 runs. To train the
graph convolutional network of Neural Predictor [80], we use the open source implementation13 and
train it on the 500 validation architectures from scratch for each property.

Downstream results. Next, we verify if higher correlations translate to downstream gains. We
consider the clean accuracy on CIFAR-10 in this experiment as an example. We retrain the regression
model on the graph embeddings of the combined ID-VAL and ID-TEST sets and generate 100k new
architectures (similarly to how ID-TEST are generated) to pick the most accurate one according to
the trained regression model. We train the chosen architecture from scratch following [19, 24, 32], i.e.
with SGD for 600 epochs using cutout augmentation (C), an auxiliary classifier (A) and the drop path
(D) regularization. In addition, we train the chosen architecture for just 50 epochs using the same
hyperparameters we used to train our ID-VAL and ID-TEST architectures as in § 5.1. We train the
chosen architecture 5 times using 5 random seeds and report an average and standard deviation of the
final classification accuracy on the test set of CIFAR-10 (Table 9). We perform this experiment for
GHN-1 and GHN-2 in the same way. Among the methods we compare in Table 9, our GHN-2-based
search finds the most performant network if training is done for 50 epochs (without and with C, A
and D) and finds a competitive network if training is done for 600 epochs with C, A and D.

Table 9: CIFAR-10 best architectures and their performance on the test set. C — cutout augmentation,
A — auxiliary classifier, D — drop path regularization. The best result in each row is bolded.

GHN-1 GHN-2 DARTS [19] PDARTS [32]

# params (M) 3.1 3.1 3.3 3.4
50 epochs 92.61±0.16 93.94±0.11 93.11±0.09 92.95±0.14
50 epochs + C,A,D [19] 91.80±0.14 95.24±0.14 94.50±0.08 94.22±0.06
600 epochs + C,A,D [19] 95.90±0.08 97.26±0.09 97.17±0.06 97.48±0.06

C.2.4 Comparing Neural Architectures

In addition to our experiments in § 5.2, we further evaluate representation power of GHNs by
computing the distance between neural architectures in the graph embedding space.

Experimental setup. We compute the pairwise distance between the computational graphs a1 and
a2 as the `2 norm between their graph embedding ||ha1 − ha2 ||. We chose ResNet-50 as a reference
network and compare its graph structure to the other three predefined architectures: ResNet-34,
ResNet-50 without skip connections, and ViT. Among these, ViT is intuitively expected to have the
largest `2 distance, because it is mainly composed of non-convolutional operations. ResNet-50-No-
Skip should be closer (in the `2 sense) to ResNet-50 than ViT, because it is based on convolutions,
but further away than ResNet-34, since it does not have skip connections.

Additional baseline. As a reference graph distance, we employ the Hungarian algorithm [43]. This
algorithm computes the total assignment “cost” between two sets of nodes. It is used as an efficient
approximation of the exact graph distance algorithms [106, 107], which are infeasible for graphs
of the size we consider here.

Qualitative results. The `2 distances computed based on GHN-2 align well with our initial hy-
pothesis of the relative distances between the architectures as well as with the Hungarian distances
(Table 10). In contrast, the baselines inappropriately embed ResNet-50 closer to ResNet-50-No-Skip

13https://github.com/ultmaster/neuralpredictor.pytorch
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Table 10: Comparing ResNet-50 to the three predefined architectures using the GHNs trained on
CIFAR-10 in terms of the `2 distance between graph embeddings.

RESNET-50 RESNET-34 RESNET-50-NO-SKIP VIT

Hungarian 118.0 134.0 207.5
MLP 0.4 0.2 1.0
GHN-1 0.6 0.5 1.7
GHN-2 1.0 1.3 3.1

than to ResNet-34. Thus, based on this simple evaluation, GHN-2 captures graph structures better
than the baselines.

We further compare the architectures in the ID-TEST set and visualize the most similar and dissimilar
ones using our trained models. Based on the visualizations in Fig. 12, MLP as expected is not able to
capture graph structures, since it relies only on node features (the most similar architectures shown
on the left are quite different). The difference between GHN-1 and GHN-2 is hard to understand
qualitatively, so we compare them numerically below.

`2 = 0.02 `2 = 2.4

`2 = 0.03 `2 = 3.4

`2 = 0.08 `2 = 3.6

Figure 12: Most similar (left) and dissimilar (right) architectures (in terms of the `2 distance) in the
ID-TEST set based on the graph embeddings obtained by the MLP (top row), GHN-1 (middle row)
and GHN-2 (bottom row) trained on CIFAR-10.

Quantitative results. To quantify the representation power of GHNs, we exploit the fact that, by
design, the OOD architectures in our DEEPNETS-1M are more dissimilar from the ID architectures
than the architectures within the ID distribution. So, a strong GHN should reflect that design principle
and map the OOD architectures further from the ID ones in the embedding space. One way to
measure the distance between two feature distributions, such as our graph embeddings, is the Fréchet
distance (FD) [108]. We compute the FD between graph embeddings of 5000 training architectures
and five test subsets (in the similar style as in [109–111]): ID-TEST and four OOD subsets (Table 11).
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GHN-2 maps the ID-TEST architectures close to the training ones, while the OOD ones are further
away, reflecting the underlying design characteristics of these subsets. On the other hand, both
baselines inappropriately map the DEEP and DENSE architectures as close or even closer to the
training ones than ID-TEST, despite the differences in their graph properties (Table 1, Fig. 6). This
indicates GHN-2’s stronger representation compared to the GHN-1 and MLP baselines.

Table 11: FD between test and training graph embeddings on CIFAR-10. The average assignment
cost between two sets of nodes using the Hungarian algorithm is shown for reference.

MODEL ID-TEST WIDE DEEP DENSE BN-FREE

Hungarian 208.7 199.9 365.6 340.7 193.1
MLP 0.50 1.04 0.37 0.39 1.10
GHN-1 0.15 0.45 0.16 0.21 5.45
GHN-2 0.30 0.80 1.11 0.59 3.64

Alternative ways to compare graphs include running expensive graph edit distance (GED) algorithms,
infeasible for graphs of our size, or designing task-specific graph kernels [78, 112, 77, 106]. As a more
efficient (and less accurate) variant of GED, we employ the Hungarian algorithm. It finds the optimal
assignment between two sets of nodes, so its disadvantage is that it ignores the edges. It still can
capture the distribution shifts between graphs that can be detected based on the number of nodes and
their features, such as for the DEEP and DENSE subsets (Table 11). It does not differentiate TRAIN and
BN-FREE, perhaps, due to the fact that a small portion of architectures in TRAIN does not have BN.
Finally, the inability of the Hungarian algorithm to capture the difference between TRAIN and WIDE
can be explained by the fact that we ignore the shape of parameters when running this algorithm.

C.3 Analysis of Predicted Parameters

C.3.1 Diversity

We analyze how much parameter prediction is sensitive to the input network architecture. For that
purpose, we analyze the parameters of 1,000 evaluation architectures (ID-VAL and ID-TEST) of
DEEPNETS-1M on CIFAR-10. We compare the diversity of the parameters trained with SGD from
scratch (He’s initialization+SGD) to the diversity of the parameters predicted by GHNs. To analyze
the parameters, we consider all the parameters associated with an operation, which is in general a 4D
tensor (i.e. out channels × in channels × height × width). As tensor shapes vary drastically across
architectures and layers, it is challenging to find a large set of tensors of the same shape. We found that
the shape of 128×1×3×3 is one of the most frequent ones: appearing 760 times across the evaluation
architectures. So for a given method of obtaining parameters (i.e. He’s initialization+SGD or GHN),
we obtain a set of 760 tensors with 128×1×3×3 = 1152 values in each tensor, i.e. a 760×1152
matrix. For each pair of rows in this matrix, we compute the absolute cosine distance, which results
in a 760×760 matrix with values in range [0,1]. We report the mean value of this matrix in Table 12.

Results. The parameters predicted by GHN-2 are more diverse than the ones predicted by GHN-1:
average distance is 0.17 compared to 0.07 respectively (Table 12). The parameters predicted by MLPs
are extremely similar to each other, since the graph structure is not exploited by MLPs. The cosine
distance is not exactly zero for MLPs, because two different primitives (group convolution and dilated
group convolution) can have the same 128×1×3×3 shape. The parameters predicted by GHN-2 are
more similar (low cosine distance) to each other compared to He’s initialization+SGD. Low cosine
distances in case of GHNs indicate that GHNs “store” good parameters to some degree However, our
GHN-2 seems to rely on storing the parameters less than GHN-1 and MLP. Instead, GHN-2 relies
more on the input graph to predict more diverse parameters depending on the layer and architecture.
So, GHN-2 is more sensitive to the input graph. We believe this is achieved by our enhancements, in
particular virtual edges, that allow GHN-2 to better propagate information across nodes of the graph.

C.3.2 Sparsity

We also analyze the sparsity of predicted parameters using the same 1,000 evaluation architectures.
The sparsity can change drastically across the layers, so to fairly compare sparsities we consider
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Table 12: Analysis of predicted parameters on CIFAR-10.

Method of obtaining parameters Average distance between parameter tensors Average sparsity

He’s init. + SGD 0.98 33%
MLP 0.01 16%
GHN-1 0.07 20%
GHN-2 0.17 39%

the first layer only. We compute the sparsity of parameters w as the percentage of absolute values
satisfying |w| < 0.05. We report the average sparsity of all first-layer parameters in Table 12.

Results. The first-layer parameters predicted by GHN-2 are similar to the parameters trained by
SGD in terms of sparsity: average sparsity is 39% compared to 33% respectively (Table 12). Higher
sparsity of the parameters predicted by GHN-2 (39%) compared to the ones of GHN-1 (20%) may
have been achieved due to the proposed parameter normalization method. The parameters predicted
by GHN-2 are also more sparse than the ones obtained by SGD. Qualitatively, we found that GHN-2
predicts many values close to 0 in case of convolutional kernels 5×5 and larger, which is probably
due to the bias towards more frequent 3×3 and 1×1 shapes during training. Mitigating this bias may
improve GHN’s performance.

C.4 Training Speed of GHNs

Training GHN-2 with meta-batching takes 0.9 GPU hours per epoch on CIFAR-10 and around
7.4 GPU hours per epoch on ImageNet (Table 13). The training speed is mostly affected by the
meta-batch size (bm) and the sequential nature of the GatedGNN. Given that GHNs learn to model
1M architectures, the training is very efficient. The speed of training GHNs with can be further
improved by better parallelization of the meta-batch. Note that GHNs need to be trained only once
for a given image dataset. Afterwards, trained GHNs can be used to predict parameters for many
arbitrary architectures in less than a second per architecture (see Table 4 in the main text).

Table 13: Times of training GHNs on NVIDIA V100-32GB using our code.

MODEL # GPUs CIFAR-10 IMAGENET
64 images/batch 256 images/batch

sec/batch hours/epoch sec/batch hours/epoch
Training a single ResNet-50 with SGD 1 0.10 0.02 0.77 1.03
MLP with meta-batch size bm = 1 1 0.32 0.06 0.67 0.90
GHN-2 with meta-batch size bm = 1 1 1.16 0.23 1.54 2.06
GHN-2 with meta-batch size bm = 8 1 7.17 1.40 out of GPU memory
GHN-2 with meta-batch size bm = 8 4 4.62 0.90 5.53 7.40

D Additional Related Work

Besides the works discussed in § 6, our work is also loosely related to other parameter prediction
methods [113, 98, 114], analysis of graph structure of neural networks [46], knowledge distillation
from multiple teachers [115], compression methods [116] and optimization-based initialization [117–
119]. Denil et al. [113] train a model that can predict a fraction of network parameters given other
parameters requiring to retrain the model for each new architecture. Bertinetto et al. [98] train
a model that predicts parameters given a new few-shot task similarly to [18, 96], and the model
is also tied to a particular architecture. The HyperGAN [114] allows to generate an ensemble
of trained parameters in a computationally efficient way, but as the aforementioned works is
constrained to a particular architecture. Finally, MetaInit [117], GradInit [118] and Sylvester-based
initialization [119] can initialize arbitrary networks by carefully optimizing their initial parameters,
but due to the optimization loop they are generally more computationally expensive compared to
predicting parameters using GHNs. Overall, these prior works did not formulate the task nor proposed
the methods of predicting performant parameters for diverse and large-scale architectures as ours.

29



Finally, the construction of our DEEPNETS-1M is related to the works on network design spaces.
Generating arbitrary architectures using a graph generative model, e.g. [120, 121, 46], can be one way
to create the training dataset F . Instead, we leverage and extend an existing DARTS framework [19]
specializing on neural architectures to generate F . More recent works [122] or other domains [123]
can be considered in future work.

E Limitations

Our work makes a significant step towards reducing the computational burden of iterative optimization
methods. However, it is limited in several aspects.

Fixed dataset and objective. Compared to GHNs, one of the crucial advantages of iterative opti-
mizers such as SGD is that they can be easily used to train on new datasets and new loss functions.
Future work can thus focus on fine-tuning GHNs on new datasets and objectives or conditioning
GHNs on data and hyperparameters akin to SGD.

Training speed. Training GHN-2 on larger datasets and with a larger meta-batch (bm) becomes
slower. For example, on ImageNet with bm = 8 it takes about 7.4 hours per epoch using 4×NVIDIA
V100-32GB using our PyTorch implementation. So, training of our GHN-2 on ImageNet for 150
epochs took about 50 days. The slow training speed is mainly due to limited parallelization of the
meta-batch (i.e. using bm GPUs should be faster) and the sequential nature of the GatedGNN.

Fine-tuning predicted parameters. While in § 5.3 we showed significant gains of using GHN-2
for initialization on two low-data tasks, we did not find such an initialization beneficial in the case
of more data. In particular, we compare training curves of ResNet-50 on CIFAR-10 when starting
from the predicted parameters versus from the random-based He’s initialization [57]. For each
initialization case, we tune hyperparameters such as an initial learning rate and weight decay. Despite
ResNet-50 being an OOD architecture, GHN-2-based initialization helps the network to learn faster
in the first few epochs compared to He’s initialization (Fig. 13). However, after around 5 epochs, He’s
initialization starts to outperform GHN-2, diminishing its initial benefit. By fine-tuning the predicted
parameters with Adam we could slightly improve GHN-2’s results. However, the results are still
worse than He’s initialization in this experiment, which requires further investigation. Despite this
limitation, GHN-2 significantly improves on GHN-1 in this experiment similarly to § 5.3.
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Figure 13: Training ResNet-50 on CIFAR-10 from random and GHN-based initializations.

F Societal Impact

One of the negative impacts of training networks using iterative optimization methods is the envi-
ronmental footprint [11, 12]. Aiming at improving on the state-of-the-art, practitioners often spend
tremendous computational resources, e.g. for manual/automatic hyperparameter and architecture
search requiring rerunning the optimization. Our work can positively impact society by making a step
toward predicting performant parameters in a resource-sustainable fashion. On the other hand, com-
pared to random initialization strategies, in parameter prediction a single deterministic model could
be used to initialize thousands or more downstream networks. All predicted parameters can inherit
the same bias or expose any offensive or personally identifiable content present in a source dataset.
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